E.L., a modern-day Phineas Gage: Revisiting frontal lobe injury

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
FREITAS, Pedro H. M. de
MONTEIRO, Ruy C.
BERTANI, Raphael
PERRET, Caio M.
RODRIGUES, Pedro C.
VICENTINI, Joana
MORAIS, Tagore M. Gonzalez de
ROZENTAL, Stefano F. A.
GALVAO, Gustavo F.
MATTOS, Fabricio de
Citação
LANCET REGIONAL HEALTH-AMERICAS, v.14, article ID 100340, 17p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background How the prefrontal cortex (PFC) recovers its functionality following lesions remains a conundrum. Recent work has uncovered the importance of transient low-frequency oscillatory activity (LFO; < 4 Hz) for the recovery of an injured brain. We aimed to determine whether persistent cortical oscillatory dynamics contribute to brain capability to support 'normal life' following injury. Methods In this 9-year prospective longitudinal study (08/2012-2021), we collected data from the patient E.L., a modern-day Phineas Gage, who suffered from lesions, impacting 11% of his total brain mass, to his right PFC and supplementary motor area after his skull was transfixed by an iron rod. A systematic evaluation of clinical, electrophysiologic, brain imaging, neuropsychological and behavioural testing were used to clarify the clinical significance of relationship between LFO discharge and executive dysfunctions and compare E.L.'s disorders to that attributed to Gage (1848), a landmark in the history of neurology and neuroscience. Findings Selective recruitment of the non-injured left hemisphere during execution of unimanual right-hand movements resulted in the emergence of robust LFO, an EEG-detected marker for disconnection of brain areas, in the damaged right hemisphere. In contrast, recruitment of the damaged right hemisphere during contralateral hand movement, resulted in the co-activation of the left hemisphere and decreased right hemisphere LFO to levels of controls enabling performance, suggesting a target for neuromodulation. Similarly, transcranial magnetic stimulation (TMS), used to create a temporary virtual-lesion over E.L.'s healthy hemisphere, disrupted the modulation of contralateral LFO, disturbing behaviour and impairing executive function tasks. In contrast to Gage, reasoning, planning, working memory, social, sexual and family behaviours eluded clinical inspection by decreasing LFO in the delta frequency range during motor and executive functioning. Interpretation Our study suggests that modulation of LFO dynamics is an important mechanism by which PFC accommodates neurological injuries, supporting the reports of Gages recovery, and represents an attractive target for therapeutic interventions.
Palavras-chave
Traumatic brain injury (TBI), Phineas Gage, Prefrontal cortex (PFC), Corpus callosum (C.C.), Magnetic Resonance Imaging (MRI), Neuropsychological tests, Transcranial Magnetic Stimulation, Low Frequency Oscillations
Referências
  1. Arciniega H, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-80995-1
  2. Berlucchi G, 2012, CORTEX, V48, P36, DOI 10.1016/j.cortex.2011.04.008
  3. Blatow M, 2011, J MAGN RESON IMAGING, V34, P429, DOI 10.1002/jmri.22629
  4. Chen YH, 2016, BRIT J PSYCHIAT, V208, P160, DOI 10.1192/bjp.bp.114.156075
  5. Cohen JD, 1997, NATURE, V386, P604, DOI 10.1038/386604a0
  6. Colom R, 2003, PERS INDIV DIFFER, V34, P33, DOI 10.1016/S0191-8869(02)00023-5
  7. Crowley K, 2005, SLEEP, V28, P865, DOI 10.1093/sleep/28.7.865
  8. Dang-Vu TT, 2008, P NATL ACAD SCI USA, V105, P15160, DOI 10.1073/pnas.0801819105
  9. Gazzaniga MS, 2009, NEUROLOGY OF CONSCIOUSNESS: COGNITIVE NEUROSCIENCE AND NEUROPATHOLOGY, P261, DOI 10.1016/B978-0-12-374168-4.00020-4
  10. Gazzaniga MS, 2000, BRAIN, V123, P1293, DOI 10.1093/brain/123.7.1293
  11. GLOOR P, 1977, NEUROLOGY, V27, P326, DOI 10.1212/WNL.27.4.326
  12. Goldberg E, 2005, PSYCHIAT CLIN N AM, V28, P567, DOI 10.1016/j.psc.2005.05.005
  13. Harlow John M., 1993, Publications of the Massachusetts Medical Society, V4, P274, DOI 10.1177/0957154X9300401407
  14. Harmony T, 2013, FRONT INTEGR NEUROSC, V7, DOI 10.3389/fnint.2013.00083
  15. Huang MX, 2012, NEUROIMAGE, V61, P1067, DOI 10.1016/j.neuroimage.2012.04.029
  16. Huber R, 2004, NATURE, V430, P78, DOI 10.1038/nature02663
  17. Husain M, 2003, NAT REV NEUROSCI, V4, P26, DOI 10.1038/nrn1005
  18. Kessels R P, 2000, Appl Neuropsychol, V7, P252, DOI 10.1207/S15324826AN0704_8
  19. Kinnunen KM, 2011, BRAIN, V134, P449, DOI 10.1093/brain/awq347
  20. Lee MY, 2013, NEUROSCI LETT, V533, P7, DOI 10.1016/j.neulet.2012.11.041
  21. Llinás RR, 2006, J NEUROPHYSIOL, V95, P3297, DOI 10.1152/jn.00166.2006
  22. Lundstrom BN, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42347-y
  23. Luria A. R., 1966, Higher cortical functions in man
  24. Massimini M, 2005, SCIENCE, V309, P2228, DOI 10.1126/science.1117256
  25. Massimini M, 2007, P NATL ACAD SCI USA, V104, P8496, DOI 10.1073/pnas.0702495104
  26. McIntosh RD, 2021, CORTEX, V135, P146, DOI 10.1016/j.cortex.2020.11.005
  27. Mecarelli O, 2004, ANN PHARMACOTHER, V38, P1816, DOI 10.1345/aph.1E136
  28. Munoz DP, 2004, NAT REV NEUROSCI, V5, P218, DOI 10.1038/nrn1345
  29. Mutha PK, 2012, J MOTOR BEHAV, V44, P455, DOI 10.1080/00222895.2012.747482
  30. Nair DG, 2007, NEUROIMAGE, V34, P253, DOI 10.1016/j.neuroimage.2006.09.010
  31. Nardone R, 2020, BRAIN RES BULL, V159, P44, DOI 10.1016/j.brainresbull.2020.03.016
  32. Narikiyo K, 2020, NAT NEUROSCI, V23, P741, DOI 10.1038/s41593-020-0625-7
  33. O'Reilly JX, 2013, P NATL ACAD SCI USA, V110, P13982, DOI 10.1073/pnas.1305062110
  34. Parker RI, 2009, BEHAV THER, V40, P357, DOI 10.1016/j.beth.2008.10.006
  35. Perez MA, 2014, J NEUROPHYSIOL, V111, P405, DOI 10.1152/jn.00322.2013
  36. Sacks O, 2008, ANN NEUROL, V63, P129, DOI 10.1002/ana.21378
  37. Salat DH, 1999, ARCH NEUROL-CHICAGO, V56, P338, DOI 10.1001/archneur.56.3.338
  38. Savazzi S, 2007, NEUROPSYCHOLOGIA, V45, P2417, DOI 10.1016/j.neuropsychologia.2007.04.002
  39. Schmidt MF, 2003, J NEUROPHYSIOL, V90, P3931, DOI 10.1152/jn.00003.2003
  40. Schwalm M, 2017, ELIFE, V6, DOI 10.7554/eLife.27602
  41. SLICK D, 2006, COMPENDIUM NEUROPSYC, P1
  42. STERIADE M, 1993, J NEUROSCI, V13, P3266
  43. Theyel BB, 2010, NAT NEUROSCI, V13, P84, DOI 10.1038/nn.2449
  44. Tombu M, 2003, J EXP PSYCHOL HUMAN, V29, P3, DOI 10.1037/0096-1523.29.1.3
  45. Tyszka JM, 2011, J NEUROSCI, V31, P15154, DOI 10.1523/JNEUROSCI.1453-11.2011
  46. Uddin LQ, 2008, NEUROREPORT, V19, P703, DOI 10.1097/WNR.0b013e3282fb8203
  47. van Horn JD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037454
  48. Vesuna S, 2020, NATURE, V586, P87, DOI 10.1038/s41586-020-2731-9
  49. Walsh V, 2000, NAT REV NEUROSCI, V1, P73, DOI 10.1038/35036239
  50. Weiller C, 1996, NEUROIMAGE, V4, P105, DOI 10.1006/nimg.1996.0034
  51. Yeh N, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00993
  52. Zhao W, 2018, NEUROIMAGE-CLIN, V20, P594, DOI 10.1016/j.nicl.2018.08.027