Aerobic exercise training mitigates tumor growth and cancer-induced splenomegaly through modulation of non-platelet platelet factor 4 expression

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
TOBIAS, Gabriel C.
GOMES, Joao L. P.
FERNANDES, Larissa G.
VOLTARELLI, Vanessa A.
ALMEIDA, Ney R. de
JANNIG, Paulo R.
SOUZA, Rodrigo W. Alves de
OLIVEIRA, Edilamar M.
Citação
SCIENTIFIC REPORTS, v.13, n.1, article ID 21970, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.
Palavras-chave
Referências
  1. Agudelo LZ, 2014, CELL, V159, P33, DOI 10.1016/j.cell.2014.07.051
  2. Aquila G, 2020, CANCERS, V12, DOI 10.3390/cancers12082312
  3. Beheshti A, 2015, ONCOTARGET, V6, P35419, DOI 10.18632/oncotarget.6214
  4. Bergers G, 2003, J CLIN INVEST, V111, P1287, DOI 10.1172/JCI200317929
  5. BERGLUND U, 1987, EUR HEART J, V8, P25, DOI 10.1093/oxfordjournals.eurheartj.a062155
  6. Betof AS, 2015, JNCI-J NATL CANCER I, V107, DOI 10.1093/jnci/djv040
  7. Brand M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010247
  8. Bronte V, 2013, IMMUNITY, V39, P806, DOI 10.1016/j.immuni.2013.10.010
  9. Buss LA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229290
  10. Cervi D, 2008, BLOOD, V111, P1201, DOI 10.1182/blood-2007-04-084798
  11. Cesta MF, 2006, TOXICOL PATHOL, V34, P455, DOI 10.1080/01926230600867743
  12. Coppinger JA, 2007, BLOOD, V109, P4786, DOI 10.1182/blood-2006-07-038539
  13. Creighton BC, 2013, EUR J APPL PHYSIOL, V113, P2203, DOI 10.1007/s00421-013-2645-4
  14. Davie SA, 2007, TRANSGENIC RES, V16, P193, DOI 10.1007/s11248-006-9056-9
  15. Denis M, 2023, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1011943
  16. DOUSTEBLAZY P, 1984, THROMB HAEMOSTASIS, V52, P297
  17. duPre' SA, 2007, EXP MOL PATHOL, V82, P12, DOI 10.1016/j.yexmp.2006.06.007
  18. Elming PB, 2023, J APPL PHYSIOL, V134, P692, DOI 10.1152/japplphysiol.00561.2022
  19. Fehri E., 2023, Cells, V12, P32
  20. Ferreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.x
  21. Fiedler GM, 2009, CLIN CANCER RES, V15, P3812, DOI 10.1158/1078-0432.CCR-08-2701
  22. Furrer R, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abi4852
  23. Goh J, 2014, AM J CANCER RES, V4, P378
  24. Goh J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080123
  25. Gomes JLP, 2021, CANCERS, V13, DOI 10.3390/cancers13225728
  26. Györffy B, 2010, BREAST CANCER RES TR, V123, P725, DOI 10.1007/s10549-009-0674-9
  27. Han JS, 2021, EJNMMI RES, V11, DOI 10.1186/s13550-021-00834-2
  28. Han YM, 2018, CELL, V173, P634, DOI 10.1016/j.cell.2018.02.061
  29. Heberle H, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0611-3
  30. Higgins KA, 2014, CANCER-AM CANCER SOC, V120, P3302, DOI 10.1002/cncr.28878
  31. Hojman P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109030
  32. Hou ZX, 2019, CIRC RES, V124, P1386, DOI 10.1161/CIRCRESAHA.118.314635
  33. Ju JH, 2008, BMC CANCER, V8, DOI 10.1186/1471-2407-8-316
  34. Koch LG, 2011, CIRC RES, V109, P1162, DOI 10.1161/CIRCRESAHA.111.253807
  35. Kumar MP, 2018, CELL REP, V25, P1458, DOI 10.1016/j.celrep.2018.10.047
  36. Lakoski SG, 2015, JAMA ONCOL, V1, P231, DOI 10.1001/jamaoncol.2015.0226
  37. Lee JK, 2001, IN VIVO, V15, P255
  38. Leiter O, 2019, STEM CELL REP, V12, P667, DOI 10.1016/j.stemcr.2019.02.009
  39. LEVINE SP, 1984, AM J HEMATOL, V17, P117, DOI 10.1002/ajh.2830170204
  40. Li YH, 2003, CANCER BIOTHER RADIO, V18, P829, DOI 10.1089/108497803770418373
  41. Liu Y, 2015, J HEPATOL, V63, P114, DOI 10.1016/j.jhep.2015.02.009
  42. Mabuchi S, 2014, JNCI-J NATL CANCER I, V106, DOI 10.1093/jnci/dju147
  43. MANT MJ, 1984, J APPL PHYSIOL, V57, P1333, DOI 10.1152/jappl.1984.57.5.1333
  44. Martinez-Jimenez CP, 2017, SCIENCE, V355, P1433, DOI 10.1126/science.aah4115
  45. Massett MP, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.782695
  46. Mebius RE, 2005, NAT REV IMMUNOL, V5, P606, DOI 10.1038/nri1669
  47. Mehl KA, 2005, J APPL PHYSIOL, V98, P2219, DOI 10.1152/japplphysiol.00975.2004
  48. Melo L, 2019, AM J CANCER RES, V9, P1246
  49. Michna L, 2006, CARCINOGENESIS, V27, P2108, DOI 10.1093/carcin/bgl057
  50. Moore SC, 2016, JAMA INTERN MED, V176, P816, DOI 10.1001/jamainternmed.2016.1548
  51. Morris EM, 2014, AM J PHYSIOL-ENDOC M, V307, pE355, DOI 10.1152/ajpendo.00093.2014
  52. Mosely SIS, 2017, CANCER IMMUNOL RES, V5, P29, DOI 10.1158/2326-6066.CIR-16-0114
  53. Nissinen TA, 2018, J CACHEXIA SARCOPENI, V9, P514, DOI 10.1002/jcsm.12310
  54. Ottria A, 2022, RHEUMATOLOGY, V61, P2682, DOI 10.1093/rheumatology/keab532
  55. Palazon A, 2017, CANCER CELL, V32, P669, DOI 10.1016/j.ccell.2017.10.003
  56. Pedersen BK, 2013, COMPR PHYSIOL, V3, P1337, DOI 10.1002/cphy.c120033
  57. Pedersen L, 2016, CELL METAB, V23, P554, DOI 10.1016/j.cmet.2016.01.011
  58. Peel AB, 2015, GYNECOL ONCOL, V138, P394, DOI 10.1016/j.ygyno.2015.05.027
  59. Peterson JE, 2012, ANGIOGENESIS, V15, P265, DOI 10.1007/s10456-012-9259-z
  60. Pigna E, 2016, SCI REP-UK, V6, DOI 10.1038/srep26991
  61. Pin F, 2015, ONCOTARGET, V6, P43202, DOI 10.18632/oncotarget.6439
  62. Poruk KE, 2010, CANCER EPIDEM BIOMAR, V19, P2605, DOI 10.1158/1055-9965.EPI-10-0178
  63. Pucci F, 2016, CELL REP, V17, P1764, DOI 10.1016/j.celrep.2016.10.031
  64. PURKISS SF, 1993, BRIT J SURG, V80, P1036, DOI 10.1002/bjs.1800800838
  65. Rao RR, 2014, CELL, V157, P1279, DOI 10.1016/j.cell.2014.03.065
  66. Ravindranathan S, 2018, BREAST CANCER RES, V20, DOI 10.1186/s13058-018-1054-3
  67. Rivas DA, 2011, AM J PHYSIOL-REG I, V300, pR835, DOI 10.1152/ajpregu.00659.2010
  68. Roberts LD, 2014, CELL METAB, V19, P96, DOI 10.1016/j.cmet.2013.12.003
  69. ROEBUCK BD, 1990, CANCER RES, V50, P6811
  70. Rosa-Caldwell ME, 2020, APPL PHYSIOL NUTR ME, V45, P500, DOI 10.1139/apnm-2019-0407
  71. Ruas JL, 2012, CELL, V151, P1319, DOI 10.1016/j.cell.2012.10.050
  72. Safarians S, 1997, AM J PATHOL, V150, P949
  73. Schwarzer M, 2010, BASIC RES CARDIOL, V105, P357, DOI 10.1007/s00395-010-0087-2
  74. Shah R, 2017, AM J PHYSIOL-HEART C, V313, pH1162, DOI 10.1152/ajpheart.00500.2017
  75. Shirvani H, 2022, SPORT SCI HLTH, V18, P463, DOI 10.1007/s11332-021-00826-8
  76. Spitzer MH, 2017, CELL, V168, P487, DOI 10.1016/j.cell.2016.12.022
  77. STRAUSS WE, 1985, AM HEART J, V110, P293, DOI 10.1016/0002-8703(85)90147-4
  78. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  79. Sun SH, 2023, INNOVATION-AMSTERDAM, V4, DOI 10.1016/j.xinn.2023.100380
  80. Tohme S, 2017, HEPATOLOGY, V66, P182, DOI 10.1002/hep.29184
  81. Tsai IJ, 2021, CANCERS, V13, DOI 10.3390/cancers13092190
  82. Turbitt WJ, 2019, CANCER PREV RES, V12, P493, DOI 10.1158/1940-6207.CAPR-17-0233
  83. Vandercappellen J, 2011, CYTOKINE GROWTH F R, V22, P1, DOI 10.1016/j.cytogfr.2010.10.011
  84. WANG JS, 1994, CIRCULATION, V90, P2877, DOI 10.1161/01.CIR.90.6.2877
  85. Wennerberg Erik, 2020, Oncotarget, V11, P452, DOI 10.18632/oncotarget.27464
  86. Wolff G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097033
  87. Xiao CL, 2023, J INTEGR MED-JIM, V21, P184, DOI 10.1016/j.joim.2023.01.002
  88. Zelenay S, 2015, CELL, V162, P1257, DOI 10.1016/j.cell.2015.08.015
  89. Zeng B, 2021, INT J BIOL SCI, V17, P3000, DOI 10.7150/ijbs.60866
  90. Zhang QB, 2016, ONCOGENE, V35, P4122, DOI 10.1038/onc.2015.484
  91. Zhang WT, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47308-z
  92. Zhang Y, 2015, CANCER BIOL THER, V16, P1775, DOI 10.1080/15384047.2015.1095404
  93. Zhang ZQ, 2018, CANCER MED-US, V7, P5611, DOI 10.1002/cam4.1783