Disentangling the influences of parental genetics on offspring's cognition, education, and psychopathology via genetic and phenotypic pathways

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
AXELRUD, Luiza K.
HOFFMANN, Mauricio S.
VOSBERG, Daniel E.
SANTORO, Marcos
PAN, Pedro M.
GADELHA, Ary
I, Sintia Belangero
SHIN, Jean
THAPAR, Anita
Citação
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, v.64, n.3, p.408-416, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Specific pathways of intergenerational transmission of behavioral traits remain unclear. Here, we aim to investigate how parental genetics influence offspring cognition, educational attainment, and psychopathology in youth. Methods Participants for the discovery sample were 2,189 offspring (aged 6-14 years), 1898 mothers and 1,017 fathers who underwent genotyping, psychiatric, and cognitive assessments. We calculated polygenic scores (PGS) for cognition, educational attainment, attention-deficit hyperactivity disorder (ADHD), and schizophrenia for the trios. Phenotypes studied included educational and cognitive measures, ADHD and psychotic symptoms. We used a stepwise approach and multiple mediation models to analyze the effect of parental PGS on offspring traits via offspring PGS and parental phenotype. Significant results were replicated in a sample of 1,029 adolescents, 363 mothers, and 307 fathers. Results Maternal and paternal PGS for cognition influenced offspring general intelligence and executive function via offspring PGS (genetic pathway) and parental education (phenotypic pathway). Similar results were found for parental PGS for educational attainment and offspring reading and writing skills. These pathways fully explained associations between parental PGS and offspring phenotypes, without residual direct association. Associations with maternal, but not paternal, PGS were replicated. No associations were found between parental PGS for psychopathology and offspring specific symptoms. Conclusions Our findings indicate that parental genetics influences offspring cognition and educational attainment by genetic and phenotypic pathways, suggesting the expression of parental phenotypes partially explain the association between parental genetic risk and offspring outcomes. Multiple mediations might represent an effective approach to disentangle distinct pathways for intergenerational transmission of behavioral traits.
Palavras-chave
Genetics, gene-environment correlation, intergenerational transmission, cognition, educational attainment, polygenic scores
Referências
  1. Balbona JV, 2021, BEHAV GENET, V51, P264, DOI 10.1007/s10519-020-10032-w
  2. Bates TC, 2018, TWIN RES HUM GENET, V21, P73, DOI 10.1017/thg.2018.11
  3. Cheesman R, 2020, BMC MED, V18, DOI 10.1186/s12916-020-01760-1
  4. de Zeeuw EL, 2020, BEHAV GENET, V50, P221, DOI 10.1007/s10519-020-09992-w
  5. Demontis D, 2019, NAT GENET, V51, P63, DOI 10.1038/s41588-018-0269-7
  6. Engelhardt LE, 2019, DEVELOPMENTAL SCI, V22, DOI 10.1111/desc.12699
  7. Figueiredo V. L. M., 1998, Psicologia Escolar e Educacional, V2, P101, DOI [https://doi.org/10.1590/S1413-85571998000200004, DOI 10.1590/S1413-85571998000200004]
  8. Goodman R, 2000, J CHILD PSYCHOL PSYC, V41, P645, DOI 10.1017/S0021963099005909
  9. Harold GT, 2013, J FAM PSYCHOL, V27, P12, DOI 10.1037/a0031190
  10. Jami ES, 2020, AM J MED GENET B, V183, P258, DOI 10.1002/ajmg.b.32784
  11. Kendler KS, 2020, AM J PSYCHIAT, V177, P928, DOI 10.1176/appi.ajp.2020.20010017
  12. Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P929, DOI 10.1001/archpsyc.60.9.929
  13. Kendler KS, 2001, ARCH GEN PSYCHIAT, V58, P1005, DOI 10.1001/archpsyc.58.11.1005
  14. Kong A, 2018, SCIENCE, V359, P424, DOI 10.1126/science.aan6877
  15. Konings M, 2006, ACTA PSYCHIAT SCAND, V114, P55, DOI 10.1111/j.1600-0447.2005.00741.x
  16. Lawlor Deborah, 2017, Wellcome Open Res, V2, P11, DOI 10.12688/wellcomeopenres.10567.1
  17. Lee JJ, 2018, NAT GENET, V50, P1112, DOI 10.1038/s41588-018-0147-3
  18. Little RJA., 2002, Statistical Analysis with Missing Data, V2nd ed., DOI [DOI 10.1002/9781119013563.CH10, DOI 10.1002/9781119013563]
  19. Martel MM, 2017, J ABNORM PSYCHOL, V126, P137, DOI 10.1037/abn0000205
  20. Masten AS, 2010, DEV PSYCHOPATHOL, V22, P491, DOI 10.1017/S0954579410000222
  21. Okbay A, 2022, NAT GENET, V54, P437, DOI 10.1038/s41588-022-01016-z
  22. Pausova Z, 2007, HUM BRAIN MAPP, V28, P502, DOI 10.1002/hbm.20402
  23. Pausova Z, 2017, INT J EPIDEMIOL, V46, DOI 10.1093/ije/dyw023
  24. Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285
  25. Rice F, 2009, P NATL ACAD SCI USA, V106, P2464, DOI 10.1073/pnas.0808798106
  26. Rosseel Y, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i02
  27. Rutter M, 2006, J CHILD PSYCHOL PSYC, V47, P226, DOI 10.1111/j.1469-7610.2005.01557.x
  28. Salum GA, 2015, INT J METH PSYCH RES, V24, P58, DOI 10.1002/mpr.1459
  29. Sikora J, 2019, SOC SCI RES, V77, P1, DOI 10.1016/j.ssresearch.2018.10.003
  30. Silventoinen K, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69526-6
  31. Stein L.M., TDE TESTE DESEMPENHO
  32. TELLEGEN A, 1967, J CONSULT PSYCHOL, V31, P499, DOI 10.1037/h0024963
  33. Trubetskoy V, 2022, NATURE, V604, P502, DOI 10.1038/s41586-022-04434-5
  34. Tubbs JD, 2020, BEHAV GENET, V50, P310, DOI 10.1007/s10519-020-10008-w
  35. van Bergen E, 2017, READ RES QUART, V52, P147, DOI 10.1002/rrq.160
  36. Wang B., 2021, GENETIC NURTURE EFFE, DOI [10.1101/2021.01.15.426782, DOI 10.1101/2021.01.15.426782]
  37. Wechsler D., 1991, Wechsler Intelligence Scalefor Children-Fourth Edition
  38. Weissman MM, 2000, ARCH GEN PSYCHIAT, V57, P675, DOI 10.1001/archpsyc.57.7.675
  39. Wertz J, 2020, CHILD DEV, V91, P1745, DOI 10.1111/cdev.13329
  40. Yengo L, 2018, NAT HUM BEHAV, V2, P948, DOI 10.1038/s41562-018-0476-3