Expression of tissue factor signaling pathway elements correlates with the production of vascular endothelial growth factor and interleukin-8 in human astrocytoma patients

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPANDIDOS PUBL LTD
Autores
CARNEIRO-LOBO, Tatiana C.
LIMA, Marina T.
MARIANO-OLIVEIRA, Andrea
DUTRA-OLIVEIRA, Angelica
SOGAYAR, Mari C.
MONTEIRO, Robson Q.
Citação
ONCOLOGY REPORTS, v.31, n.2, p.679-686, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The expression levels of tissue factor (TF), the clotting initiator protein, have been correlated with angiogenesis and the histological grade of malignancy in glioma patients. The pro-tumor function of TF is linked to a family of G protein-coupled receptors known as protease-activated receptors (PARs), which may be activated by blood coagulation proteases. Activation of PARs elicits a number of responses, including the expression of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In the present study, we analyzed the expression of TF signaling pathway elements (TF, PAR1 and PAR2) and evaluated their correlation with the expression of downstream products (VEGF and IL-8) in human astrocytoma patients. Quantitative PCR (qPCR) showed a significant increase in TF expression in grade IV (glioblastoma) tumors, which was inversely correlated with the expression of the tumor-suppressor PTEN. Immunohistochemistry and qPCR analyses demonstrated a highly significant elevation in the expression of PAR1, but not PAR2, in tumor samples from high-grade astrocytoma patients. The elevated VEGF expression levels detected in the high-grade astrocytoma samples were positively correlated with TF, PAR1 and PAR2 expression. In addition, IL-8 was significantly increased in glioblastoma patients and positively correlated with TF and PAR2 expression. Further in vitro assays employing the human glioma cell lines U87-MG and HOG demonstrated that a synthetic peptide PAR2 agonist stimulated VEGF and IL-8 production. Our findings suggest a role for TF signaling pathway elements in astrocytoma progression, particularly in glioblastoma. Therefore, TF/PAR signaling elements may be suitable targets for the development of new therapies for the treatment of aggressive glioma.
Palavras-chave
blood coagulation, tissue factor, protease-activated receptor, vascular endothelial growth factor, interleukin-8, astrocytoma, glioblastoma
Referências
  1. Albrektsen T, 2007, J THROMB HAEMOST, V5, P1588, DOI 10.1111/j.1538-7836.2007.02603.x
  2. Anand M, 2012, THROMB RES, V129, pS46, DOI 10.1016/S0049-3848(12)70015-4
  3. Boire A, 2005, CELL, V120, P303, DOI 10.1016/j.cell.2004.12.018
  4. Brat DJ, 2005, NEURO-ONCOLOGY, V7, P122, DOI 10.1215/S1152851704001061
  5. Brat DJ, 2004, LAB INVEST, V84, P397, DOI 10.1038/labinvest.3700070
  6. Carneiro-Lobo TC, 2009, J THROMB HAEMOST, V7, P1855, DOI 10.1111/j.1538-7836.2009.03553.x
  7. Carneiro-Lobo TC, 2012, J THROMB HAEMOST, V10, P1849, DOI 10.1111/j.1538-7836.2012.04864.x
  8. Coughlin SR, 2005, J THROMB HAEMOST, V3, P1800, DOI 10.1111/j.1538-7836.2005.01377.x
  9. DeGroot CJA, 1997, J NEUROSCI RES, V49, P342, DOI 10.1002/(SICI)1097-4547(19970801)49:3<342::AID-JNR9>3.0.CO;2-C
  10. Dutra-Oliveira A, 2012, BIOCHEM BIOPH RES CO, V421, P221, DOI 10.1016/j.bbrc.2012.03.140
  11. Elste AP, 2010, J MOL HISTOL, V41, P89, DOI 10.1007/s10735-010-9274-6
  12. Fernandes RS, 2006, J THROMB HAEMOST, V4, P1546, DOI 10.1111/j.1538-7836.2006.01985.x
  13. Francischetti IMB, 2008, MICROCIRCULATION, V15, P81, DOI 10.1080/10739680701451516
  14. Gessler F, 2010, NEUROSCIENCE, V165, P1312, DOI 10.1016/j.neuroscience.2009.11.049
  15. Guan M, 2002, CLIN BIOCHEM, V35, P321, DOI 10.1016/S0009-9120(02)00312-0
  16. Hamada K, 1996, CANCER, V77, P1877, DOI 10.1002/(SICI)1097-0142(19960501)77:9<1877::AID-CNCR18>3.0.CO;2-X
  17. Harter PN, 2013, NEUROPATHOLOGY, V33, P515, DOI 10.1111/neup.12018
  18. Hua Y, 2005, J THROMB HAEMOST, V3, P1917, DOI 10.1111/j.1538-7836.2005.01446.x
  19. Kasthuri RS, 2009, J CLIN ONCOL, V27, P4834, DOI 10.1200/JCO.2009.22.6324
  20. Kirszberg C, 2009, MELANOMA RES, V19, P301, DOI 10.1097/CMR.0b013e32832e40fe
  21. KOCH AE, 1992, SCIENCE, V258, P1798, DOI 10.1126/science.1281554
  22. Lima FRS, 2012, BBA-REV CANCER, V1826, P338, DOI 10.1016/j.bbcan.2012.05.004
  23. Lima LG, 2013, BIOSCIENCE REP, V33, P701, DOI 10.1042/BSR20130057
  24. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  25. Louis DN, 2007, ACTA NEUROPATHOL, V114, P97, DOI 10.1007/s00401-007-0243-4
  26. Magnus N, 2010, BLOOD, V116, P815, DOI 10.1182/blood-2009-10-250639
  27. Oba-Shinjo SM, 2005, MOL BRAIN RES, V140, P25, DOI 10.1016/j.molbrainres.2005.06.015
  28. Ornstein DL, 2002, SEMIN THROMB HEMOST, V28, P19, DOI 10.1055/s-2002-20561
  29. PLATE KH, 1992, NATURE, V359, P845, DOI 10.1038/359845a0
  30. Rak J, 2009, BEST PRACT RES CL HA, V22, P71, DOI 10.1016/j.beha.2008.12.008
  31. Rong Y, 2005, CANCER RES, V65, P1406, DOI 10.1158/0008-5472.CAN-04-3376
  32. Ruf W, 2011, J THROMB HAEMOST, V9, P306, DOI 10.1111/j.1538-7836.2011.04318.x
  33. Schaffner F, 2010, BLOOD, V116, P6106, DOI 10.1182/blood-2010-06-289314
  34. Svensson KJ, 2011, P NATL ACAD SCI USA, V108, P13147, DOI 10.1073/pnas.1104261108
  35. Tehrani M, 2008, BRAIN PATHOL, V18, P164, DOI 10.1111/j.1750-3639.2007.00108.x
  36. Versteeg HH, 2008, CANCER RES, V68, P7219, DOI 10.1158/0008-5472.CAN-08-0419
  37. Wen PY, 2008, NEW ENGL J MED, V359, P492, DOI 10.1056/NEJMra0708126
  38. Williams JC, 2012, FRONT BIOSCI, V1, P358
  39. Xu Y, 2009, NEUROL RES, V31, P759, DOI 10.1179/174313209X385699
  40. Yin YJ, 2003, FASEB J, V17, P163, DOI 10.1096/fj.02-0316com
  41. Zhang Y, 2011, PATHOL RES PRACT, V207, P24, DOI 10.1016/j.prp.2010.10.003