Hedgehog signaling pathway mediates tongue tumorigenesis in wild-type mice but not in Ga13-deficient mice

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Autores
SANTOS, Debora de Oliveira
LOYOLA, Adriano Mota
CARDOSO, Sergio Vitorino
LIU, Fu-Tong
FARIA, Paulo Rogerio de
Citação
EXPERIMENTAL AND MOLECULAR PATHOLOGY, v.97, n.3, p.332-337, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Oral squamous cell carcinoma (OSCC) is one of the most aggressive cancers of the oral cavity and an important cause of death worldwide. Currently, there are limited clinical tools aiding clinicians to establish its early diagnosis, and genetic and epigenetic events leading to the pathogenesis of OSCC remain unsolved. The use of carcinogen-induced knocked out mouse models would help to improve its early detection and also determine the role of proteins such as galectin-3 (Gal3) in this process. Here we used a mouse model of oral carcinogenesis employing two mouse genotypes: wild-type (Gal3 +/+) and galectin-3-deficient mice (Gal3 -/-) challenged by the carcinogen 4NQO for 16 weeks. After induction, the expression of Wnt1, Wnt3A, Shh and Gli3 proteins in tongue samples was evaluated using an immunohistochemistry approach. All samples of dysplasia and carcinoma were negative for Wnt1. Wnt3A expression was detected in both Gal3 +/+ and Gal3 -/- mice, at similar levels. Wnt3A expression did not predict tongue tumorigenesis in either genotype. Dysplastic- and carcinoma-expressing Shh was statistically significantly higher in Gal3 +/+ mice than Gal3 -/- mice (p < 0.0001), and was associated with tongue tumorigenesis only in the former. Gli3 expression decreased and increased from dysplasia to carcinoma in Gal3 +/+ and Gal3 -/- mice, respectively, although the difference was not significant. The results suggest that activated Wnt signaling is present in both mice, and that the Hh signaling pathway might play a role in tongue carcinoma development in Gal3 +/+ mice.
Palavras-chave
Oral carcinogenesis, Galectin-3, Tongue, Mice, Sonic hedgehog, Wnt signaling
Referências
  1. Abdel-Aziz HO, 2008, J CANCER RES CLIN, V134, P777, DOI 10.1007/s00432-007-0345-3
  2. Amakye D, 2013, NAT MED, V19, P1410, DOI 10.1038/nm.3389
  3. Beachy PA, 2004, NATURE, V432, P324, DOI 10.1038/nature03100
  4. Berman DM, 2003, NATURE, V425, P846, DOI 10.1038/nature01972
  5. Briscoe J, 2013, NAT REV MOL CELL BIO, V14, P416, DOI 10.1038/nrm3598
  6. Cardesa A., 2005, WHO CLASSIFICATION T, P118
  7. da Silva SD, 2011, ORAL ONCOL, V47, P783, DOI 10.1016/j.oraloncology.2011.07.004
  8. de Faria PR, 2011, EXP MOL PATHOL, V90, P189, DOI 10.1016/j.yexmp.2010.12.007
  9. Dimitrova K, 2013, ONKOLOGIE, V36, P279, DOI 10.1159/000350322
  10. Eude-Le Parco I, 2009, GLYCOBIOLOGY, V19, P68, DOI 10.1093/glycob/cwn105
  11. Fracalossi ACC, 2010, EXP MOL PATHOL, V88, P176, DOI 10.1016/j.yexmp.2009.11.004
  12. Giles RH, 2003, BBA-REV CANCER, V1653, P1, DOI 10.1016/S0304-419X(03)00005-2
  13. Hagen T, 2002, BIOCHEM BIOPH RES CO, V294, P324, DOI 10.1016/S0006-291X(02)00485-0
  14. Honami T, 2012, ORAL ONCOL, V48, P49, DOI 10.1016/j.oraloncology.2011.08.026
  15. Hsu DK, 2000, AM J PATHOL, V156, P1073, DOI 10.1016/S0002-9440(10)64975-9
  16. Ishida K, 2007, MOL CANCER, V9, P6
  17. Kanojia D, 2006, ORAL ONCOL, V42, P655, DOI 10.1016/j.oraloncology.2005.10.013
  18. Kise Y, 2009, BIOCHEM BIOPH RES CO, V387, P569, DOI 10.1016/j.bbrc.2009.07.087
  19. Liu FT, 2005, NAT REV CANCER, V5, P29, DOI 10.1038/nrc1527
  20. LUMERMAN H, 1995, ORAL SURG ORAL MED O, V79, P321, DOI 10.1016/S1079-2104(05)80226-4
  21. Markowska AI, 2010, J EXP MED, V207, P1981, DOI 10.1084/jem.20090121
  22. Mendonca DF, 2012, INT J CLIN EXP PATHO, V5, P547
  23. Mill P, 2005, DEV CELL, V9, P293, DOI 10.1016/j.devcel.2005.06.009
  24. Mimeault M, 2010, PHARMACOL REV, V62, P497, DOI 10.1124/pr.109.002329
  25. Nishimaki H, 2004, BIOCHEM BIOPH RES CO, V314, P313, DOI 10.1016/j.bbrc.2003.12.097
  26. Paces-Fessy M, 2004, BIOCHEM J, V378, P353, DOI 10.1042/BJ20030786
  27. Perez-Sayans M, 2012, ORAL ONCOL, V48, P56, DOI 10.1016/j.oraloncology.2011.09.001
  28. Reibel J, 2003, CRIT REV ORAL BIOL M, V14, P47
  29. Ruiz I, 1999, TRENDS GENET, V15, P418
  30. Sant'Ana JMDA, 2011, ANTICANCER RES, V31, P2805
  31. Schneider FT, 2010, AM J PATHOL, V177, P404, DOI 10.2353/ajpath.2010.091079
  32. Shimura T, 2005, CANCER RES, V65, P3535, DOI 10.1158/0008-5472.CAN-05-0104
  33. Shimura T, 2004, CANCER RES, V64, P6363, DOI 10.1158/0008-5472.CAN-04-1816
  34. SINICROPE FA, 1995, CANCER RES, V55, P237
  35. Song SM, 2009, CANCER RES, V69, P1343, DOI 10.1158/0008-5472.CAN-08-4153
  36. Takenaka Yukinori, 2004, Glycoconjugate Journal, V19, P543
  37. Tang JY, 2007, TOXICOL APPL PHARM, V224, P257, DOI 10.1016/j.taap.2006.12.011
  38. Tang XH, 2004, CLIN CANCER RES, V10, P301, DOI 10.1158/1078-0432.CCR-0999-3
  39. Tempe D, 2006, MOL CELL BIOL, V26, P4316, DOI 10.1128/MCB.02183-05
  40. Wang LH, 2006, MODERN PATHOL, V19, P675, DOI 10.1038/modpathol.3800573
  41. Wang YF, 2012, HEAD NECK-J SCI SPEC, V34, P1556, DOI 10.1002/hed.21958
  42. Watkins D Neil, 2003, Cell Cycle, V2, P196
  43. Xuan YH, 2006, MODERN PATHOL, V19, P1139, DOI 10.1038/modpathol.3800600