Structural alterations of skeletal muscle in copd

Carregando...
Imagem de Miniatura
Citações na Scopus
51
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS RESEARCH FOUNDATION
Autores
MATHUR, Sunita
BROOKS, Dina
Citação
FRONTIERS IN PHYSIOLOGY, v.5, article ID 104, 8p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Chronic obstructive pulmonary disease (COPD) is a respiratory disease associated with a systemic inflammatory response. Peripheral muscle dysfunction has been well characterized in individuals with COPD and results from a complex interaction between systemic and local factors. Objective: In this narrative review, we will describe muscle wasting in people with COPD, the associated structural changes, muscle regenerative capacity and possible mechanisms for muscle wasting. We will also discuss how structural changes relate to impaired muscle function and mobility in people with COPD. Key Observations: Approximately 30-40% of individuals with COPD experience muscle mass depletion. Furthermore, muscle atrophy is a predictor of physical function and mortality in this population. Associated structural changes include a decreased proportion and size of type-I fibers, reduced oxidative capacity and mitochondrial density mainly in the quadriceps. Observations related to impaired muscle regenerative capacity in individuals with COPD include a lower proportion of central nuclei in the presence or absence of muscle atrophy and decreased maximal telomere length, which has been correlated with reduced muscle cross-sectional area. Potential mechanisms for muscle wasting in COPD may include excessive production of reactive oxygen species (ROS), altered amino acid metabolism and lower expression of peroxisome proliferator-activated receptors-gamma-coactivator 1-alpha mRNA. Despite a moderate relationship between muscle atrophy and function, impairments in oxidative metabolism only seems weakly related to muscle function. Conclusion: This review article demonstrates the cellular modifications in the peripheral muscle of people with COPD and describes the evidence of its relationship to muscle function. Future research will focus on rehabilitation strategies to improve muscle wasting and maximize function.
Palavras-chave
COPD, skeletal muscle, deconditioning, muscle fiber types, mytochondria, protein balance
Referências
  1. Agusti AGN, 2002, AM J RESP CRIT CARE, V166, P485, DOI 10.1164/rccm.2108013
  2. Alonso JR, 2003, PHARMACOL TOXICOL, V93, P142, DOI 10.1034/j.1600-0773.2003.930306.x
  3. Al-Shair K, 2009, RESP MED, V103, P1572, DOI 10.1016/j.rmed.2008.11.021
  4. ATS/ERS, 1999, AM J RESP CRIT CARE, V159, pS1
  5. Baarends EM, 1997, EUR RESPIR J, V10, P2807, DOI 10.1183/09031936.97.10122807
  6. Barreiro E, 2011, J APPL PHYSIOL, V111, P808, DOI 10.1152/japplphysiol.01017.2010
  7. Beauchamp MK, 2009, RESP MED, V103, P1885, DOI 10.1016/j.rmed.2009.06.008
  8. Bernard S, 1998, AM J RESP CRIT CARE, V158, P629
  9. Butcher Scott J, 2004, J Cardiopulm Rehabil, V24, P274, DOI 10.1097/00008483-200407000-00013
  10. Chavannes NH, 2005, FAM PRACT, V22, P604, DOI 10.1093/fampra/cmi056
  11. Couillard A, 2003, AM J RESP CRIT CARE, V167, P1664, DOI 10.1164/rccm.200209-1028OC
  12. Crul T, 2007, EUR J CLIN INVEST, V37, P897, DOI 10.1111/j.1365-2362.2007.01867.x
  13. Cuttica MJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029069
  14. Debigare R, 2003, CHEST, V124, P83, DOI 10.1378/chest.124.1.83
  15. Debigaré Richard, 2010, Proc Am Thorac Soc, V7, P84, DOI 10.1513/pats.200906-051JS
  16. de Boer MD, 2008, EUR J APPL PHYSIOL, V104, P401, DOI 10.1007/s00421-008-0703-0
  17. Decramer M, 1996, AM J RESP CRIT CARE, V153, P1958
  18. Decramer M, 1997, EUR RESPIR J, V10, P417, DOI 10.1183/09031936.97.10020417
  19. de Oca MM, 2008, CHEST, V133, P13, DOI 10.1378/chest.07-1592
  20. Doucet M, 2007, AM J RESP CRIT CARE, V176, P261, DOI 10.1164/rccm.200605-7040C
  21. Eid AA, 2001, AM J RESP CRIT CARE, V164, P1414
  22. Eliason G, 2010, RESP RES, V11, DOI 10.1186/1465-9921-11-97
  23. Engelen MPKJ, 1999, CLIN NUTR, V18, P275, DOI 10.1016/S0261-5614(98)80024-1
  24. ENGELEN MPKJ, 1994, EUR RESPIR J, V7, P1793, DOI 10.1183/09031936.94.07101793
  25. Fermoselle C, 2012, EUR RESPIR J, V40, P851, DOI 10.1183/09031936.00137211
  26. Goodpaster BH, 2003, DIABETES CARE, V26, P372, DOI 10.2337/diacare.26.2.372
  27. Gosker HR, 2007, EUR RESPIR J, V30, P73, DOI 10.1183/09031936.0014906
  28. Gosker HR, 2002, EUR RESPIR J, V19, P617, DOI 10.1183/09031936.02.00762001
  29. Gosker HR, 2002, AM J CLIN NUTR, V76, P113
  30. Gosker HR, 2003, EUR RESPIR J, V22, P280, DOI 10.1183/09031936.03.00012803
  31. Gosker HR, 2007, THORAX, V62, P944, DOI 10.1136/thx.2007.078980
  32. Gosselink R, 1996, AM J RESP CRIT CARE, V153, P976
  33. Gosselink R, 2000, J Cardiopulm Rehabil, V20, P353, DOI 10.1097/00008483-200011000-00004
  34. Guo YT, 2013, AM J RESP CRIT CARE, V188, P1313, DOI 10.1164/rccm.201304-0732OC
  35. HAMILTON AL, 1995, AM J RESP CRIT CARE, V152, P2021
  36. Hara H, 2013, AM J PHYSIOL-LUNG C, V305, pL737, DOI 10.1152/ajplung.00146.2013
  37. Heijdra YF, 2003, CHEST, V124, P75, DOI 10.1378/chest.124.1.75
  38. HILDEBRAND IL, 1991, ACTA PHYSIOL SCAND, V141, P435, DOI 10.1111/j.1748-1716.1991.tb09102.x
  39. Hoffmann RF, 2013, RESP RES, V14, DOI 10.1186/1465-9921-14-97
  40. HUGHES RL, 1983, RESPIRATION, V44, P321
  41. Hussain SNA, 2013, J APPL PHYSIOL, V114, P1273, DOI 10.1152/japplphysiol.00893.2012
  42. JAKOBSSON P, 1995, AM J RESP CRIT CARE, V151, P374
  43. JAKOBSSON P, 1990, EUR RESPIR J, V3, P192
  44. Janaudis-Ferreira T, 2009, J CARDIOPULM REHABIL, V29, P277, DOI 10.1097/HCR.0b013e3181b4c8d0
  45. Jatta K, 2009, J CLIN PATHOL, V62, P70, DOI 10.1136/jcp.2008.057190
  46. Jo E, 2012, AGING CLIN EXP RES, V24, P412, DOI 10.3275/8464
  47. Jobin J, 1998, J Cardiopulm Rehabil, V18, P432, DOI 10.1097/00008483-199811000-00005
  48. Ju CR, 2012, RESP MED, V106, P102, DOI 10.1016/j.rmed.2011.07.016
  49. Kelly JL, 2013, COPD, V10, P40, DOI 10.3109/15412555.2012.727923
  50. KILLIAN KJ, 1992, AM REV RESPIR DIS, V146, P935
  51. Kirkham PA, 2013, CHEST, V144, P266, DOI 10.1378/chest.12-2664
  52. Koechlin C, 2005, THORAX, V60, P834, DOI 10.1136/thx.2004.037531
  53. Kok MO, 2012, EUR ADDICT RES, V18, P70, DOI 10.1159/000333600
  54. Kondo K, 2001, EXP CELL RES, V264, P117, DOI 10.1006/excr.2000.5139
  55. KUTSUZAWA T, 1995, AM J RESP CRIT CARE, V152, P647
  56. Lands LC, 1999, J HEART LUNG TRANSPL, V18, P113, DOI 10.1016/S1053-2498(98)00027-8
  57. Langen RCJ, 2013, INT J BIOCHEM CELL B, V45, P2245, DOI 10.1016/j.biocel.2013.06.015
  58. Lemire BB, 2012, J APPL PHYSIOL, V113, P159, DOI 10.1152/japplphysiol.01518.2011
  59. Maltais F, 1996, AM J RESP CRIT CARE, V153, P288
  60. Maltais F, 2000, THORAX, V55, P848, DOI 10.1136/thorax.55.10.848
  61. Man WDC, 2010, EUR RESPIR J, V36, P686, DOI 10.1183/09031936.00032510
  62. Marquis K, 2002, AM J RESP CRIT CARE, V166, P809, DOI 10.1164/rccm.2107031
  63. Mathur S, 2007, J CARDIOPULM REHABIL, V27, P411, DOI 10.1097/01.HCR.0000300271.45881.99
  64. Mathur S, 2008, PHYS THER, V88, P219, DOI 10.2522/ptj.20070052
  65. Meyer A, 2013, EXP PHYSIOL, V98, P1063, DOI 10.1113/expphysiol.2012.069468
  66. Mostert R, 2000, RESP MED, V94, P859, DOI 10.1053/rmed.2000.0829
  67. Piehl-Aulin K, 2009, RESPIRATION, V78, P191, DOI 10.1159/000207793
  68. Pisot R, 2008, EUR J APPL PHYSIOL, V104, P409, DOI 10.1007/s00421-008-0698-6
  69. Pitta F, 2005, AM J RESP CRIT CARE, V171, P972, DOI 10.1164/rccm.200407-855OC
  70. Plant PJ, 2010, AM J RESP CELL MOL, V42, P461, DOI 10.1165/rcmb.2008-0382OC
  71. Puente-Maestu L, 2012, AM J RESP CELL MOL, V47, P358, DOI 10.1165/rcmb.2011-0382OC
  72. Roig M, 2009, RESP MED, V103, P1257, DOI 10.1016/j.rmed.2009.03.022
  73. Saey D, 2003, AM J RESP CRIT CARE, V168, P425, DOI 10.1164/rccm.200208-856OC
  74. Sato Y, 1997, EUR NEUROL, V37, P116, DOI 10.1159/000117421
  75. Satta A, 1997, EUR RESPIR J, V10, P2853, DOI 10.1183/09031936.97.10122853
  76. SCHOLS AMWJ, 1993, AM REV RESPIR DIS, V147, P1151
  77. Schols AMWJ, 2005, AM J CLIN NUTR, V82, P53
  78. SCHOLS AMWJ, 1991, AM J CLIN NUTR, V54, P983
  79. Serres I, 1998, CHEST, V113, P900, DOI 10.1378/chest.113.4.900
  80. Seymour JM, 2010, EUR RESPIR J, V36, P81, DOI 10.1183/09031936.00104909
  81. Shoup R, 1997, EUR RESPIR J, V10, P1576, DOI 10.1183/09031936.97.10071576
  82. Shrikrishna D, 2012, EUR RESPIR J, V40, P1115, DOI 10.1183/09031936.00170111
  83. Simard C., 1996, Medicine and Science in Sports and Exercise, V28, pS95
  84. SIMPSON K, 1992, THORAX, V47, P70, DOI 10.1136/thx.47.2.70
  85. Spruit MA, 2003, THORAX, V58, P752, DOI 10.1136/thorax.58.9.752
  86. Steiner Michael C, 2005, J Cardiopulm Rehabil, V25, P43, DOI 10.1097/00008483-200501000-00010
  87. Tang K, 2010, J CELL PHYSIOL, V222, P320, DOI 10.1002/jcp.21955
  88. Theriault ME, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039124
  89. van der Toorn M, 2009, AM J PHYSIOL-LUNG C, V297, pL109, DOI 10.1152/ajplung.90461.2008
  90. Van Vliet M, 2005, AM J RESP CRIT CARE, V172, P1105, DOI 10.1164/rccm.200501-1140OC
  91. Vermeeren MAP, 2006, RESP MED, V100, P1349, DOI 10.1016/j.rmed.2005.11.023
  92. Vestbo J, 2013, AM J RESP CRIT CARE, V187, P347, DOI 10.1164/rccm.201204-0596PP
  93. Vogiatzis I, 2010, EUR RESPIR J, V36, P301, DOI 10.1183/09031936.00112909
  94. Wagner PD, 2006, RESPIROLOGY, V11, P681, DOI 10.1111/j.1400-1843.2006.00939.x
  95. Watz H, 2009, EUR RESPIR J, V33, P262, DOI 10.1183/09031936.00024608
  96. Whittom F, 1998, MED SCI SPORT EXER, V30, P1467, DOI 10.1097/00005768-199810000-00001
  97. WHO, 2008, GLOB BURD DIS 2004 U
  98. Wust RCI, 2008, EUR J APPL PHYSIOL, V104, P103, DOI 10.1007/s00421-008-0792-9
  99. YOUNG LJ, 1990, FEBS LETT, V272, P1, DOI 10.1016/0014-5793(90)80436-M