UYSHA DE SOUZA FONDA

(Fonte: Lattes)
Índice h a partir de 2011
1
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/43 - Laboratório de Medicina Nuclear, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 0 Citação(ões) na Scopus
    Influence on voxel-based dosimetry: noise effect on absorbed dose dosimetry at single time-point versus sequential single-photon emission computed tomography
    (2023) FONDA, Uysha de S.; LEITAO, Andre L. A.; PAIVA, Marcia M. D. P.; WILLEGAIGNON, Jose; JOSEFSSON, Anders; BUCHPIGUEL, Carlos A.; SAPIENZA, Marcelo T.
    ObjectiveThe purpose of this study was to evaluate how statistical fluctuation in single-photon emission computed tomography (SPECT) images propagate to absorbed dose maps. MethodsSPECT/computed tomography (CT) images of iodine-131 filled phantoms, using different acquisition and processing protocols, were evaluated using STRATOS software to assess the absorbed dose distribution at the voxel level. Absorbed dose values and coefficient of variation (COV) were analyzed for dosimetry based on single time-point SPECT images and time-integrated activities of SPECT sequences with low and high counts. ResultsConsidering dosimetry based on a single time-point, the mean absorbed dose was not significantly affected by total counts or reconstruction parameters, but the uniformity of the absorbed dose maps had an almost linear correlation with SPECT noise. When high- and low-count SPECT sequences were used to generate an absorbed dose map, the absorbed dose COV for each of the temporal sequences was slightly lower than the absorbed dose COV based on the single SPECT image with the highest count included in the sequence. ConclusionThe impact of changes in SPECT counts and reconstruction parameters is almost linear when dosimetry is based on isolated SPECT images, but less pronounced when dosimetry is based on sequential SPECTs.
  • article 1 Citação(ões) na Scopus
    Validation of automated image co-registration integrated into in-house software for voxel-based internal dosimetry on single-photon emission computed tomography images
    (2023) LEITÃO, André Luiz Alberti; FONDA, Uysha de Souza; BUCHPIGUEL, Carlos Alberto; WILLEGAIGNON, José; SAPIENZA, Marcelo Tatit
    Abstract Objective: To develop an automated co-registration system and test its performance, with and without a fiducial marker, on single-photon emission computed tomography (SPECT) images. Materials and Methods: Three SPECT/CT scans were acquired for each rotation of a Jaszczak phantom (to 0°, 5°, and 10° in relation to the bed axis), with and without a fiducial marker. Two rigid co-registration software packages-SPM12 and NMDose-coreg-were employed, and the percent root mean square error (%RMSE) was calculated in order to assess the quality of the co-registrations. Uniformity, contrast, and resolution were measured before and after co-registration. The NMDose-coreg software was employed to calculate the renal doses in 12 patients treated with 177Lu-DOTATATE, and we compared those with the values obtained with the Organ Level INternal Dose Assessment for EXponential Modeling (OLINDA/EXM) software. Results: The use of a fiducial marker had no significant effect on the quality of co-registration on SPECT images, as measured by %RMSE (p = 0.40). After co-registration, uniformity, contrast, and resolution did not differ between the images acquired with fiducial markers and those acquired without. Preliminary clinical application showed mean total processing times of 9 ± 3 min/patient for NMDose-coreg and 64 ± 10 min/patient for OLINDA/EXM, with a strong correlation between the two, despite the lower renal doses obtained with NMDose-coreg. Conclusion: The use of NMDose-coreg allows fast co-registration of SPECT images, with no loss of uniformity, contrast, or resolution. The use of a fiducial marker does not appear to increase the accuracy of co-registration on phantoms.
  • bookPart
    Técnicas de diagnóstico
    (2022) LEITãO, André Luiz Alberti; FONDA, Uysha de Souza; SAPIENZA, Marcelo Tatit