ANTONIA LILIAN DE LIMA RODRIGUES

(Fonte: Lattes)
Índice h a partir de 2011
6
Projetos de Pesquisa
Unidades Organizacionais
LIM/62 - Laboratório de Fisiopatologia Cirúrgica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 2 Citação(ões) na Scopus
    Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients
    (2023) BARBOSA, Luciana Mendonca; VALERIO, Fernanda; SILVA, Valquiria Aparecida da; RODRIGUES, Antonia Lilian de Lima; GALHARDONI, Ricardo; YENG, Lin Tchia; JUNIR, Jefferson Rosi; CONFORTO, Adriana Bastos; LUCATO, Leandro Tavares; TEIXEIRA, Manoel Jacobsen; ANDRADE, Daniel Ciampi de
    Objectives: Central neuropathic pain (CNP) is associated with altered corticomotor excitability (CE), which can potentially provide insights into its mechanisms. The objective of this study is to describe the CE changes that are specifically related to CNP.Methods: We evaluated CNP associated with brain injury after stroke or spinal cord injury (SCI) due to neuromyelitis optica through a battery of CE measurements and comprehensive pain, neurological, functional, and quality of life assessments. CNP was compared to two groups of patients with the same disease: i. with non-neuropathic pain and ii. without chronic pain, matched by sex and lesion location.Results: We included 163 patients (stroke=93; SCI=70: 74 had CNP, 43 had non-neuropathic pain, and 46 were pain-free). Stroke patients with CNP had lower motor evoked potential (MEP) in both affected and unaffected hemispheres compared to non-neuropathic pain and no-pain patients. Patients with CNP had lower amplitudes of MEPs (366 mu V +/- 464 mu V) than non-neuro-pathic (478 +/- 489) and no-pain (765 mu V +/- 880 mu V) patients, p < 0.001. Short-interval intracorti-cal inhibition (SICI) was defective (less inhibited) in patients with CNP (2.6 +/- 11.6) compared to no-pain (0.80.7), p = 0.021. MEPs negatively correlated with mechanical and cold-induced allo-dynia. Furthermore, classifying patients' results according to normative data revealed that at least 75% of patients had abnormalities in some CE parameters and confirmed MEP findings based on group analyses.Discussion: CNP is associated with decreased MEPs and SICI compared to non-neuropathic pain and no-pain patients. Corticomotor excitability changes may be helpful as neurophysiological markers of the development and persistence of pain after CNS injury, as they are likely to pro-vide insights into global CE plasticity changes occurring after CNS lesions associated with CNP.(c) 2023 The Author(s).
  • article 69 Citação(ões) na Scopus
    Insular and anterior cingulate cortex deep stimulation for central neuropathic pain Disassembling the percept of pain
    (2019) GALHARDONI, Ricardo Geront; SILVA, Valquiria Aparecida da; GARCIA-LARREA, Luis; DALE, Camila; BAPTISTA, Abrahao F.; BARBOSA, Luciana Mendonca; MENEZES, Luciana Mendes Bahia; SIQUEIRA, Silvia R. D. T. de; VALERIO, Fernanda; ROSI JR., Jefferson; RODRIGUES, Antonia Lilian de Lima; FERNANDES, Diego Toledo Reis Mendes; SELINGARDI, Priscila Mara Lorencini; MARCOLIN, Marco Antonio; DURAN, Fabio Luis de Souza; ONO, Carla Rachel; LUCATO, Leandro Tavares; FERNANDES, Ana Mercia B. L.; SILVA, Fabio E. F. da; YENG, Lin T.; BRUNONI, Andre R.; BUCHPIGUEL, Carlos A.; TEIXEIRA, Manoel J.; ANDRADE, Daniel Ciampi de
    Objective To compare the analgesic effects of stimulation of the anterior cingulate cortex (ACC) or the posterior superior insula (PSI) against sham deep (d) repetitive (r) transcranial magnetic stimulation (TMS) in patients with central neuropathic pain (CNP) after stroke or spinal cord injury in a randomized, double-blinded, sham-controlled, 3-arm parallel study. Methods Participants were randomly allocated into the active PSI-rTMS, ACC-rTMS, sham-PSI-rTMS, or sham-ACC-rTMS arms. Stimulations were performed for 12 weeks, and a comprehensive clinical and pain assessment, psychophysics, and cortical excitability measurements were performed at baseline and during treatment. The main outcome of the study was pain intensity (numeric rating scale [NRS]) after the last stimulation session. Results Ninety-eight patients (age 55.02 +/- 12.13 years) completed the study. NRS score was not significantly different between groups at the end of the study. Active rTMS treatments had no significant effects on pain interference with daily activities, pain dimensions, neuropathic pain symptoms, mood, medication use, cortical excitability measurements, or quality of life. Heat pain threshold was significantly increased after treatment in the PSI-dTMS group from baseline (1.58, 95% confidence interval [CI] 0.09-3.06]) compared to sham-dTMS (-1.02, 95% CI -2.10 to 0.04, p = 0.014), and ACC-dTMS caused a significant decrease in anxiety scores (-2.96, 95% CI -4.1 to -1.7]) compared to sham-dTMS (-0.78, 95% CI -1.9 to 0.3; p = 0.018). Conclusions ACC- and PSI-dTMS were not different from sham-dTMS for pain relief in CNP despite a significant antinociceptive effect after insular stimulation and anxiolytic effects of ACC-dTMS. These results showed that the different dimensions of pain can be modulated in humans noninvasively by directly stimulating deeper SNC cortical structures without necessarily affecting clinical pain per se.
  • article 8 Citação(ões) na Scopus
    Long-term deep-TMS does not negatively affect cognitive functions in stroke and spinal cord injury patients with central neuropathic pain
    (2019) SELINGARDI, Priscila Mara Lorencini; RODRIGUES, Antonia Lilian de Lima; SILVA, Valquiria Aparecida da; FERNANDES, Diego Toledo Reis Mendes; ROSI JR., Jefferson; MARCOLIN, Marco Antonio; YENG, Lin T.; BRUNONI, Andre R.; TEIXEIRA, Manoel J.; GALHARDONI, Ricardo; ANDRADE, Daniel Ciampi de
  • article 11 Citação(ões) na Scopus
    Dissecting central post-stroke pain: a controlled symptom-psychophysical characterization
    (2022) BARBOSA, Luciana Mendonca; SILVA, Valquiria Aparecida da; RODRIGUES, Antonia Lilian de Lima; FERNANDES, Diego Toledo Reis Mendes; OLIVEIRA, Rogerio Adas Ayres de; GALHARDONI, Ricardo; YENG, Lin Tchia; ROSI JUNIOR, Jefferson; CONFORTO, Adriana Bastos; LUCATO, Leandro Tavares; LEMOS, Marcelo Delboni; PEYRON, Roland; GARCIA-LARREA, Luis; TEIXEIRA, Manoel Jacobsen; ANDRADE, Daniel Ciampi de
    Dissection of distinct post-stroke pain syndromes evidenced that the neuropathic pain inventory, the presence of cold thermal deficit and the finding of allodynia on bedside examination, explained 77% of the occurrence of neuropathic central post-stroke pain, a new finding that has clear diagnostic potential. Central post-stroke pain affects up to 12% of stroke survivors and is notoriously refractory to treatment. However, stroke patients often suffer from other types of pain of non-neuropathic nature (musculoskeletal, inflammatory, complex regional) and no head-to-head comparison of their respective clinical and somatosensory profiles has been performed so far. We compared 39 patients with definite central neuropathic post-stroke pain with two matched control groups: 32 patients with exclusively non-neuropathic pain developed after stroke and 31 stroke patients not complaining of pain. Patients underwent deep phenotyping via a comprehensive assessment including clinical exam, questionnaires and quantitative sensory testing to dissect central post-stroke pain from chronic pain in general and stroke. While central post-stroke pain was mostly located in the face and limbs, non-neuropathic pain was predominantly axial and located in neck, shoulders and knees (P < 0.05). Neuropathic Pain Symptom Inventory clusters burning (82.1%, n = 32, P < 0.001), tingling (66.7%, n = 26, P < 0.001) and evoked by cold (64.1%, n = 25, P < 0.001) occurred more frequently in central post-stroke pain. Hyperpathia, thermal and mechanical allodynia also occurred more commonly in this group (P < 0.001), which also presented higher levels of deafferentation (P < 0.012) with more asymmetric cold and warm detection thresholds compared with controls. In particular, cold hypoesthesia (considered when the threshold of the affected side was <41% of the contralateral threshold) odds ratio (OR) was 12 (95% CI: 3.8-41.6) for neuropathic pain. Additionally, cold detection threshold/warm detection threshold ratio correlated with the presence of neuropathic pain (rho = -0.4, P < 0.001). Correlations were found between specific neuropathic pain symptom clusters and quantitative sensory testing: paroxysmal pain with cold (rho = -0.4; P = 0.008) and heat pain thresholds (rho = 0.5; P = 0.003), burning pain with mechanical detection (rho = -0.4; P = 0.015) and mechanical pain thresholds (rho = -0.4, P < 0.013), evoked pain with mechanical pain threshold (rho = -0.3; P = 0.047). Logistic regression showed that the combination of cold hypoesthesia on quantitative sensory testing, the Neuropathic Pain Symptom Inventory, and the allodynia intensity on bedside examination explained 77% of the occurrence of neuropathic pain. These findings provide insights into the clinical-psychophysics relationships in central post-stroke pain and may assist more precise distinction of neuropathic from non-neuropathic post-stroke pain in clinical practice and in future trials.