Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Citação
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, v.53, n.3, article ID 102845, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Central neuropathic pain (CNP) is associated with altered corticomotor excitability (CE), which can potentially provide insights into its mechanisms. The objective of this study is to describe the CE changes that are specifically related to CNP.Methods: We evaluated CNP associated with brain injury after stroke or spinal cord injury (SCI) due to neuromyelitis optica through a battery of CE measurements and comprehensive pain, neurological, functional, and quality of life assessments. CNP was compared to two groups of patients with the same disease: i. with non-neuropathic pain and ii. without chronic pain, matched by sex and lesion location.Results: We included 163 patients (stroke=93; SCI=70: 74 had CNP, 43 had non-neuropathic pain, and 46 were pain-free). Stroke patients with CNP had lower motor evoked potential (MEP) in both affected and unaffected hemispheres compared to non-neuropathic pain and no-pain patients. Patients with CNP had lower amplitudes of MEPs (366 mu V +/- 464 mu V) than non-neuro-pathic (478 +/- 489) and no-pain (765 mu V +/- 880 mu V) patients, p < 0.001. Short-interval intracorti-cal inhibition (SICI) was defective (less inhibited) in patients with CNP (2.6 +/- 11.6) compared to no-pain (0.8</n>0.7), p = 0.021. MEPs negatively correlated with mechanical and cold-induced allo-dynia. Furthermore, classifying patients' results according to normative data revealed that at least 75% of patients had abnormalities in some CE parameters and confirmed MEP findings based on group analyses.Discussion: CNP is associated with decreased MEPs and SICI compared to non-neuropathic pain and no-pain patients. Corticomotor excitability changes may be helpful as neurophysiological markers of the development and persistence of pain after CNS injury, as they are likely to pro-vide insights into global CE plasticity changes occurring after CNS lesions associated with CNP.(c) 2023 The Author(s).
Palavras-chave
Referências
  1. Armstrong RA, 2014, OPHTHAL PHYSL OPT, V34, P502, DOI 10.1111/opo.12131
  2. de Oliveira RAA, 2020, ARQ NEURO-PSIQUIAT, V78, P741, DOI 10.1590/0004-282X20200166
  3. Barbosa LM, 2022, BRAIN COMMUN, V4, DOI 10.1093/braincomms/fcac090
  4. Bender R, 2001, J CLIN EPIDEMIOL, V54, P343, DOI 10.1016/S0895-4356(00)00314-0
  5. Betancur DFA, 2021, FRONT NEUROL, V12
  6. Bouhassira D, 2005, PAIN, V114, P29, DOI 10.1016/j.pain.2004.12.010
  7. Bouhassira D, 2021, PAIN, V162, P1038, DOI 10.1097/j.pain.0000000000002130
  8. Burke D, 2017, EUR J PAIN, V21, P29, DOI 10.1002/ejp.905
  9. Burns E, 2016, EUR J PAIN, V20, P1203, DOI 10.1002/ejp.859
  10. Chiang MC, 2022, EUR J NEUROL, V29, P1465, DOI 10.1111/ene.15247
  11. Choi-Kwon S, 2017, ACTA NEUROL SCAND, V135, P419, DOI 10.1111/ane.12617
  12. Cleeland C. S., 1994, Annals Academy of Medicine Singapore, V23, P129
  13. Cueva AS, 2016, NEUROPHYSIOL CLIN, V46, P43, DOI 10.1016/j.neucli.2015.12.003
  14. de Andrade DC, 2011, PAIN, V152, P320, DOI 10.1016/j.pain.2010.10.032
  15. Finnerup NB, 2015, LANCET NEUROL, V14, P162, DOI 10.1016/S1474-4422(14)70251-0
  16. Galhardoni GR, 2019, NEUROLOGY, V92, pE2165, DOI 10.1212/WNL.0000000000007396
  17. Garcia-Larrea L, 2007, NEUROIMAGE, V37, pS71, DOI 10.1016/j.neuroimage.2007.05.062
  18. Giannoni-Luza S, 2020, PAIN, V161, P1955, DOI 10.1097/j.pain.0000000000001893
  19. Groppa S, 2012, CLIN NEUROPHYSIOL, V123, P858, DOI 10.1016/j.clinph.2012.01.010
  20. Hasan M, 2014, NEUROMODULATION, V17, P731, DOI 10.1111/ner.12198
  21. Hosomi K, 2015, NAT REV NEUROL, V11, P290, DOI 10.1038/nrneurol.2015.58
  22. Hosomi K, 2013, PAIN, V154, P1352, DOI 10.1016/j.pain.2013.04.017
  23. Kadono Y, 2021, SCI REP-UK, V11, P1
  24. KATZ RT, 1992, ARCH PHYS MED REHAB, V73, P339, DOI 10.1016/0003-9993(92)90007-J
  25. Kaziyama HH, 2020, EUR J PAIN, V24, P1635, DOI 10.1002/ejp.1620
  26. Klit H, 2009, LANCET NEUROL, V8, P857, DOI 10.1016/S1474-4422(09)70176-0
  27. Lefaucheur JP, 2006, NEUROLOGY, V67, P1568, DOI 10.1212/01.wnl.0000242731.10074.3c
  28. Lefaucheur JP, 2008, J NEUROL NEUROSUR PS, V79, P1044, DOI 10.1136/jnnp.2007.135327
  29. Lenz M, 2011, NEUROLOGY, V77, P1096, DOI 10.1212/WNL.0b013e31822e1436
  30. MAHONEY F I, 1965, Md State Med J, V14, P61
  31. Manganotti P, 2002, CLIN NEUROPHYSIOL, V113, P936, DOI 10.1016/S1388-2457(02)00062-7
  32. MELZACK R, 1987, PAIN, V30, P191, DOI 10.1016/0304-3959(87)91074-8
  33. Mhalla A, 2011, PAIN, V152, P1478, DOI 10.1016/j.pain.2011.01.034
  34. Mhalla A, 2010, PAIN, V149, P495, DOI 10.1016/j.pain.2010.03.009
  35. Parker RS, 2016, BRAIN STIMUL, V9, P488, DOI 10.1016/j.brs.2016.03.020
  36. Pedler Ashley, 2010, J Physiother, V56, P137, DOI 10.1016/S1836-9553(10)70047-3
  37. Rohel A, 2021, EUR J PAIN, V25, P1209, DOI 10.1002/ejp.1746
  38. Rossini PM, 2015, CLIN NEUROPHYSIOL, V126, P1071, DOI 10.1016/j.clinph.2015.02.001
  39. Sanderson A, 2021, EUR J PAIN, V25, P1668, DOI 10.1002/ejp.1789
  40. Saturno E, 2008, NEUROL RES, V30, P1084, DOI 10.1179/174313208X332968
  41. Schabrun SM, 2016, CEREB CORTEX, V26, P1878, DOI 10.1093/cercor/bhu319
  42. Seo HY, 2018, ANN REHABIL MED-ARM, V42, P495, DOI 10.5535/arm.2018.42.4.495
  43. Svensson P, 2003, EUR J PAIN-LONDON, V7, P55, DOI 10.1016/S1090-3801(02)00050-2
  44. Tang SC, 2019, STROKE, V50, P2851, DOI 10.1161/STROKEAHA.119.025692
  45. Treede RD, 2008, NEUROLOGY, V70, P1630, DOI 10.1212/01.wnl.0000282763.29778.59
  46. TSUBOKAWA T, 1993, J NEUROSURG, V78, P393, DOI 10.3171/jns.1993.78.3.0393
  47. Tsubokawa T, 1991, Acta Neurochir Suppl (Wien), V52, P137
  48. Turgut N, 2009, ACTA NEUROL SCAND, V120, P383, DOI 10.1111/j.1600-0404.2009.01235.x
  49. Urban PP, 2010, STROKE, V41, P2016, DOI 10.1161/STROKEAHA.110.581991
  50. Valeriani M, 1999, CLIN NEUROPHYSIOL, V110, P1475, DOI 10.1016/S1388-2457(99)00075-9
  51. Valerio F, 2020, EUR J PAIN, V24, P1548, DOI 10.1002/ejp.1608
  52. Wingerchuk DM, 2006, NEUROLOGY, V66, P1485, DOI 10.1212/01.wnl.0000216139.44259.74
  53. Wrigley PJ, 2009, PAIN, V141, P52, DOI 10.1016/j.pain.2008.10.007
  54. Ziemann U, 2015, CLIN NEUROPHYSIOL, V126, P1847, DOI 10.1016/j.clinph.2014.08.028
  55. ZIGMOND AS, 1983, ACTA PSYCHIAT SCAND, V67, P361, DOI 10.1111/j.1600-0447.1983.tb09716.x