CAMILA NASCIMENTO MANTELLI

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
LIM/21 - Laboratório de Neuroimagem em Psiquiatria, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 130 Citação(ões) na Scopus
    Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease
    (2017) EHRENBERG, A. J.; NGUY, A. K.; THEOFILAS, P.; DUNLOP, S.; SUEMOTO, C. K.; ALHO, A. T. Di Lorenzo; LEITE, R. P.; RODRIGUEZ, R. Diehl; MEJIA, M. B.; RUEB, U.; FARFEL, J. M.; FERRETTI-REBUSTINI, R. E. de Lucena; NASCIMENTO, C. F.; NITRINI, R.; PASQUALLUCCI, C. A.; JACOB-FILHO, W.; MILLER, B.; SEELEY, W. W.; HEINSEN, H.; GRINBERG, L. T.
    AimsHyperphosphorylated tau neuronal cytoplasmic inclusions (ht-NCI) are the best protein correlate of clinical decline in Alzheimer's disease (AD). Qualitative evidence identifies ht-NCI accumulating in the isodendritic core before the entorhinal cortex. Here, we used unbiased stereology to quantify ht-NCI burden in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), aiming to characterize the impact of AD pathology in these nuclei with a focus on early stages.MethodsWe utilized unbiased stereology in a sample of 48 well-characterized subjects enriched for controls and early AD stages. ht-NCI counts were estimated in 60-m-thick sections immunostained for p-tau throughout LC and DRN. Data were integrated with unbiased estimates of LC and DRN neuronal population for a subset of cases.ResultsIn Braak stage 0, 7.9% and 2.6% of neurons in LC and DRN, respectively, harbour ht-NCIs. Although the number of ht-NCI+ neurons significantly increased by about 1.9x between Braak stages 0 to I in LC (P = 0.02), we failed to detect any significant difference between Braak stage I and II. Also, the number of ht-NCI+ neurons remained stable in DRN between all stages 0 and II. Finally, the differential susceptibility to tau inclusions among nuclear subdivisions was more notable in LC than in DRN.ConclusionsLC and DRN neurons exhibited ht-NCI during AD precortical stages. The ht-NCI increases along AD progression on both nuclei, but quantitative changes in LC precede DRN changes.
  • article 235 Citação(ões) na Scopus
    Locus coeruleus volume and cell population changes during Alzheimer's disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery
    (2017) THEOFILAS, Panos; EHRENBERG, Alexander J.; DUNLOP, Sara; ALHO, Ana T. Di Lorenzo; NGUY, Austin; LEITE, Renata Elaine Paraizo; RODRIGUEZ, Roberta Diehl; MEJIA, Maria B.; SUEMOTO, Claudia K.; FERRETTI-REBUSTINI, Renata Eloah De Lucena; POLICHISO, Livia; NASCIMENTO, Camila F.; SEELEY, William W.; NITRINI, Ricardo; PASQUALUCCI, Carlos Augusto; JACOB FILHO, Wilson; RUEB, Udo; NEUHAUS, John; HEINSEN, Helmut; GRINBERG, Lea T.
    Introduction: Alzheimer's disease (AD) progression follows a specific spreading pattern, emphasizing the need to characterize those brain areas that degenerate first. The brainstem's locus coeruleus (LC) is the first area to develop neurofibrillary changes (neurofibrillary tangles [NFTs]). Methods: The methods include unbiased stereologiCal analyses in human brainstems to estimate LC volume and neuronal population in controls and individuals across all AD stages. Results: As the Braak stage increases by 1 unit, the LC volume decreases by 8.4%. Neuronal loss started only midway through AD progression. Age-related changes spare the LC. Discussion: The long gap between NFT accumulation and neuronal loss suggests that a second trigger may be necessary to induce neuronal death in AD. Imaging studies should determine whether LC volumetry can replicate the stage-wise atrophy observed here and how these changes are specific to AD. LC volumetry may develop into a screening biomarker for selecting high-yield candidates to undergo expensive and less accessible positron emission tomography scans and to monitor AD progression from presymptomatic stages.
  • conferenceObject
    Argyrophilic grain disease may delay cognitive decline in AD: an autopsy study
    (2015) GRINBERG, Lea; RODRIGUEZ, Roberta; SUEMOTO, Claudia; MOLINA, Mariana; NASCIMENTO, Camila; LEITE, Renata; FERRETTI-REBUSTINI, Renata; FARFEL, Jose; HEINSEN, Helmut; NITRINI, Ricardo; PASQUALLUCCI, Carlos; JACOB-FILHO, Wilson; YAFFE, Kristine