ANA PINHEIRO MACHADO CANTON

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 37
  • article 6 Citação(ões) na Scopus
    Mutations in insulin-like growth factor receptor 1 gene (IGF1R) resulting in intrauterine and postnatal growth retardation
    (2011) LEAL, Andrea de Castro; CANTON, Ana Pinheiro Machado; MONTENEGRO, Luciana Ribeiro; COUTINHO, Debora Cabral; ARNHOLD, Ivo Jorge Prado; JORGE, Alexander Augusto de Lima
    Approximately 10% of children born small-for-gestational age (SGA) do not show spontaneous growth catch-up. The causes of this deficit in prenatal growth and its maintenance after birth are not completely known, in most cases. Over the past eight years, several heterozygous inactivating mutations and deletions in IGF1R gene have been reported, indicating the role of defects in the IGFs/IGF1R axis as a cause of growth deficit. It has been hypothesized that at least 2.5% of children born SGA may have IGF1R gene defects. The clinical presentation of these patients is highly variable in the severity of growth retardation and hormonal parameters. In the most evident cases, patients have microcephaly, mild cognitive impairment and high levels of IGF-1, associated with short stature of prenatal onset. This review will describe the clinical, molecular and treatment of short stature with hrGH of children with mutations in the IGF1R gene. Arq Bras Endocrinol Metab. 2011;55(8):541-9
  • conferenceObject
    Copy Number Variants in Patients with Congenital Hypopituitarism Associated with Complex Phenotypes
    (2015) CORREA, F.; FRANCA, M.; CANTON, A.; OTTO, A.; COSTALONGA, E.; BRITO, V; CARVALHO, L.; COSTA, S.; ARNHOLD, I; JORGE, A.; ROSENBERG, C.; MENDONCA, B.
  • article 0 Citação(ões) na Scopus
    Genotype-Phenotype Correlations in Central Precocious Puberty Caused by MKRN3 Mutations (vol 106, pg 1041, 2021)
    (2021) SERAPHIM, C. E.; CANTON, A. P. M.; MONTENEGRO, L.; PIOVESAN, M. R.; MACEDO, D. B.; CUNHA, M.; GUIMARAES, A.; RAMOS, C. O.; BENEDETTI, A. F. F.; LEAL, De Castro A.; GAGLIARDI, P. C.; ANTONINI, S. R.; GRYNGARTEN, M.; ARCARI, A. J.; ABREU, A. P.; KAISER, U. B.; SORIANO-GUILLEN, L.; ESCRIBANO-MUNOZ, A.; CORRIPIO, R.; I, J. Labarta; TRAVIESO-SUAREZ, L.; V, N. Ortiz-Cabrera; ARGENTE, J.; MENDONCA, B. B.; BRITO, V. N.; LATRONICO, A. C.
  • conferenceObject
    X-Linked Central Precocious Puberty Associated with MECP2 defects
    (2022) CANTON, Ana; TINANO, Flavia; GUASTI, Leonardo; MONTENEGRO, Luciana; RYAN, Fiona; SHEARS, Deborah; MELO, Maria Edna; GOMES, Larissa; PIANA, Mariana; BRAUNER, Raja; ESPINO, Rafael; ESCRIBANO-MUNOZ, Arancha; PAGANONI, Alyssa; KORBONITS, Marta; SERAPHIM, Carlos Eduardo; FARIA, Aline; COSTA, Silvia; KREPISCHI, Ana Cristina; JORGE, Alexander; DAVID, Alessia; ARGENTE, Jesus; MENDONCA, Berenice; BRITO, Vinicius; HOWARD, Sasha; LATRONICO, Ana Claudia
  • article 1 Citação(ões) na Scopus
    Brain MRI in Girls With Central Precocious Puberty: A Time for New Approaches Comment
    (2021) CANTON, Ana Pinheiro Machado; LATRONICO, Ana Claudia
  • article 17 Citação(ões) na Scopus
    The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty
    (2023) BRITO, Vinicius N.; CANTON, Ana P. M.; SERAPHIM, Carlos Eduardo; ABREU, Ana Paula; MACEDO, Delanie B.; MENDONCA, Berenice B.; KAISER, Ursula B.; ARGENTE, Jesus; LATRONICO, Ana Claudia
    The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
  • conferenceObject
    Clinical and Genetic Features of Central Precocious Puberty Associated with Complex Phenotypes
    (2018) CANTON, Ana; BRITO, Vinicius; MONTENEGRO, Luciana; RAMOS, Carolina; MACEDO, Delanie; BESSA, Danielle; CUNHA, Marina; JORGE, Alexander; MENDONCA, Berenice; LATRONICO, Ana Claudia
  • article 34 Citação(ões) na Scopus
    Methylome profiling of healthy and central precocious puberty girls
    (2018) BESSA, Danielle S.; MASCHIETTO, Mariana; AYLWIN, Carlos Francisco; CANTON, Ana P. M.; BRITO, Vinicius N.; MACEDO, Delanie B.; CUNHA-SILVA, Marina; PALHARES, Heloisa M. C.; RESENDE, Elisabete A. M. R. de; BORGES, Maria de Fatima; MENDONCA, Berenice B.; NETCHINE, Irene; KREPISCHI, Ana C. V.; LOMNICZI, Alejandro; OJEDA, Sergio R.; LATRONICO, Ana Claudia
    BackgroundRecent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal.ResultsAnalyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP.ConclusionMethylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.
  • bookPart
    Idiopathic short stature: diagnostic and therapeutic approach
    (2014) CANTON, Ana P. M.; JORGE, Alexander A. L.
  • article 78 Citação(ões) na Scopus
    DLK1 Is a Novel Link Between Reproduction and Metabolism
    (2019) GAMES, Larissa G.; CUNHA-SILVA, Marina; CRESPO, Raiane P.; RAMOS, Carolina O.; MONTENEGRO, Luciana R.; CANTON, Ana; LEES, Melissa; SPOUDEAS, Helen; DAUBER, Andrew; MACEDO, Delanie B.; BESSA, Danielle S.; MACIEL, Gustavo A.; BARACAT, Edmund C.; JORGE, Alexander A. L.; MENDONCA, Berenice B.; BRITO, Vinicius N.; LATRONICO, Ana Claudia
    Background: Delta-like homolog 1 (DLK1), also called preadipocyte factor 1, prevents adipocyte differentiation and has been considered a molecular gatekeeper of adipogenesis. A DLK1 complex genomic defect was identified in five women from a single family with central precocious puberty (CPP) and increased body fat percentage. Methods: We studied 60 female patients with a diagnosis of CPP or history of precocious menarche. Thirty-one of them reported a family history of precocious puberty. DLK1 DNA sequencing was performed in all patients. Serum DLK1 concentrations were measured using an ELISA assay in selected cases. Metabolic and reproductive profiles of adult women with CPP caused by DLK1 defects were compared with those of 20 women with idiopathic CPP. Results: We identified three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Va1271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1. Serum DLK1 concentrations were undetectable in three affected women. Metabolic abnormalities, such as overweight/obesity, early-onset glucose intolerance/type 2 diabetes mellitus, and hyperlipidemia, were more prevalent in women with the DLK1 mutation than in the idiopathic CPP group. Notably, the human metabolic alterations were similar to the previously described dlk1-null mice phenotype. Two sisters who carried the p.Gly199Alafs*11 mutation also exhibited polycystic ovary syndrome and infertility. Conclusions: Loss-of-function mutations of DLK1 are a definitive cause of familial CPP. The high prevalence of metabolic alterations in adult women who experienced CPP due to DLK1 defects suggests that this antiadipogenic factor represents a link between reproduction and metabolism.