THARCISIO CITRANGULO TORTELLI JUNIOR

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 0 Citação(ões) na Scopus
    Role of galectin-3 in the elastic response of radial growth phase melanoma cancer cells
    (2023) HERRERA-REINOZA, Nataly; TORTELLI JUNIOR, Tharcisio Citrangulo; TEIXEIRA, Fernanda de Sa; CHAMMAS, Roger; SALVADORI, Maria Cecilia
    Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells.
  • article 0 Citação(ões) na Scopus
    deltaXpress (ΔXpress): a tool for mapping differentially correlated genes using single-cell qPCR data
    (2023) CARRASCO, Alexis German Murillo; FURUYA, Tatiane Katsue; UNO, Miyuki; JR, Tharcisio Citrangulo Tortelli; CHAMMAS, Roger
    BackgroundHigh-throughput experiments provide deep insight into the molecular biology of different species, but more tools need to be developed to handle this type of data. At the transcriptomics level, quantitative Polymerase Chain Reaction technology (qPCR) can be affordably adapted to produce high-throughput results through a single-cell approach. In addition to comparative expression profiles between groups, single-cell approaches allow us to evaluate and propose new dependency relationships among markers. However, this alternative has not been explored before for large-scale qPCR-based experiments.ResultsHerein, we present deltaXpress (Delta Xpress), a web app for analyzing data from single-cell qPCR experiments using a combination of HTML and R programming languages in a friendly environment. This application uses cycle threshold (Ct) values and categorical information for each sample as input, allowing the best pair of housekeeping genes to be chosen to normalize the expression of target genes. Delta Xpress emulates a bulk analysis by observing differentially expressed genes, but in addition, it allows the discovery of pairwise genes differentially correlated when comparing two experimental conditions. Researchers can download normalized data or use subsequent modules to map differentially correlated genes, perform conventional comparisons between experimental groups, obtain additional information about their genes (gene glossary), and generate ready-to-publication images (600 dots per inch).Conclusions Delta Xpress web app is freely available to non-commercial users at https://alexismurillo.shinyapps.io/dXpress/ and can be used for different experiments in all technologies involving qPCR with at least one housekeeping region.
  • article 3 Citação(ões) na Scopus
    A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy
    (2022) GIOVANINI, Guilherme; BARROS, Luciana R. C.; GAMA, Leonardo R.; TORTELLI, Tharcisio C.; RAMOS, Alexandre F.
    Simple Summary Gene editing technologies reached a turning point toward epigenetic modulation for cancer treatment. Gene networks are complex systems composed of multiple non-trivially coupled elements capable of reliably processing dynamical information from the environment despite unavoidable randomness. However, this functionality is lost when the cells are in a diseased state. Hence, gene-editing-based therapeutic design can be viewed as a gene network dynamics modulation toward a healthy state. Enhancement of this control relies on mathematical models capable of effectively describing the regulation of stochastic gene expression. We use a two-state stochastic model for gene expression to investigate treatment response with a switching target gene. We show the necessity of modulating multiple gene-expression-related processes to reach a heterogeneity-reduced specific response using epigenetic-targeting cancer treatment designs. Our approach can be used as an additional tool for developing epigenetic-targeting treatments. In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
  • conferenceObject
    Effects of sulforaphane association to conventional therapy for treating triple-negative breast cancer
    (2023) COUTINHO, L. L.; CHENG, R.; RIDNOUR, L.; JUNQUEIRA, M. S.; CHAMMAS, R.; WINK, D.; TORTELLI, T. C.; RANGEL, M.
  • article 6 Citação(ões) na Scopus
    Sulforaphane: An emergent anti-cancer stem cell agent
    (2023) COUTINHO, Leandro de Lima; TORTELLI JUNIOR, Tharcisio Citrangulo; RANGEL, Maria Cristina
    Cancer is a major public health concern worldwide responsible for high morbidity and mortality rates. Alternative therapies have been extensively investigated, and plant-derived compounds have caught the attention of the scientific community due to their chemopreventive and anticancer effects. Sulforaphane (SFN) is one of these naturally occurring agents, and studies have shown that it is able to target a specific cancer cell population displaying stem-like properties, known as cancer stem cells (CSCs). These cells can self-renewal and differentiate to form highly heterogeneous tumor masses. Notably, most of the conventional chemotherapeutic agents cannot target CSCs once they usually exist in a quiescent state and overall, the available cytotoxic drugs focus on highly dividing cells. This is, at least in part, one of the reasons why some oncologic patients relapse after standard therapy. In this review we bring together studies supporting not only the chemopreventive and anticancer properties of SFN, but especially the emerging anti-CSCs effects of this natural product and its potential to be used with conventional antineoplastic drugs in the clinical setting.