Serum From Preeclamptic Women Triggers Endoplasmic Reticulum Stress Pathway and Expression of Angiogenic Factors in Trophoblast Cells

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
CASTRO, Karla R.
PRADO, Karen M.
LORENZON, Aline R.
MARQUES, Aldilane L. X.
SILVA, Elaine C. O.
FONSECA, Eduardo J. S.
Citação
FRONTIERS IN PHYSIOLOGY, v.12, article ID 799653, 13p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Preeclampsia (PE) is a hypertensive disease of pregnancy-associated with placental cell death and endoplasmic reticulum (ER) stress. It is unknown whether systemic factors aggravate placental dysfunction. We investigated whether serum factors in pregnant women with PE activate ER stress and unfolded protein responses (UPRs) in placental explants and trophoblast cells lineage. We cultured placental explants from third-trimester term placentas from control non-preeclamptic (NPE) pregnant women with serum from women with PE or controls (NPE). In PE-treated explants, there was a significant increase in gene expression of GADD34, CHOP, and SDF2. At the protein level, GRP78, SDF2, p-eIF2 alpha, and p-eIF2 alpha/eIF2 alpha ratio were also augmented in treated explants. Assays were also performed in HTR8/SV-neo trophoblast cell line to characterize the putative participation of trophoblast cells. In PE serum-treated protein levels of p-eIF2a and the ratio p-elF2 alpha/elF2 alpha increased after 12 h of treatment, while the gene expression of GADD34, ATF4, and CHOP was greater than control. Increased expression of SDF2 was also detected after 24 h-cultured HTR8/SV-neo cells. PE serum increased sFLT1 gene expression and decreased PlGF gene expression in placental explants. Morphologically, PE serum increased the number of syncytial knots and reduced placental cell metabolism and viability. Analysis of the serum of pregnant women with PE through Raman spectroscopy showed changes in amino acids, carotenoids, lipids, and DNA/RNA, which may be associated with the induction of ER stress found in chorionic villi treated with this serum. In conclusion, this study provides evidence that the serum of pregnant women with PE may impact placental villi changing its morphology, viability, and secreted functional factors while triggers ER stress and an UPR. The differences between PE and control sera include molecules acting as inducing factors in these processes. In summary, the results obtained in our assays suggest that after the development of PE, the serum profile of pregnant women may be an additional factor that feeds a continuous imbalance of placental homeostasis. In addition, this study may expand the possibilities for understanding the pathogenesis of this disorder.
Palavras-chave
ER stress, UPR pathway, trophoblast cells, pre-eclampsia, angiogenic factors
Referências
  1. Ameri K, 2008, INT J BIOCHEM CELL B, V40, P14, DOI 10.1016/j.biocel.2007.01.020
  2. Bai Y, 2020, J PHARMACEUT BIOMED, V190, DOI 10.1016/j.jpba.2020.113514
  3. Balan C, 2019, SPECTROCHIM ACTA A, V214, P79, DOI 10.1016/j.saa.2019.02.012
  4. Basar G, 2012, SPECTROSC-INT J, V27, P239, DOI 10.1155/2012/376793
  5. Bastida-Ruiz D, 2017, PLACENTA, V57, P163, DOI 10.1016/j.placenta.2017.07.004
  6. Brown MA, 2018, HYPERTENSION, V72, P24, DOI 10.1161/HYPERTENSIONAHA.117.10803
  7. Burton GJ, 2009, PLACENTA, V30, pS43, DOI 10.1016/j.placenta.2008.11.003
  8. Burton GJ, 2011, PREGNANCY HYPERTENS, V1, P72, DOI 10.1016/j.preghy.2010.12.002
  9. Cao SS, 2016, J CELL PHYSIOL, V231, P288, DOI 10.1002/jcp.25098
  10. Chen SJ, 2014, ARCH GYNECOL OBSTET, V290, P943, DOI 10.1007/s00404-014-3282-9
  11. Choudhury RH, 2017, J IMMUNOL, V198, P4115, DOI 10.4049/jimmunol.1601175
  12. Czamara K, 2015, J RAMAN SPECTROSC, V46, P4, DOI 10.1002/jrs.4607
  13. Gomes FDS, 2007, REV NUTR, V20, P537, DOI 10.1590/S1415-52732007000500009
  14. De Gelder J, 2007, J RAMAN SPECTROSC, V38, P1133, DOI 10.1002/jrs.1734
  15. de Lima VJ, 2011, SAO PAULO MED J, V129, P73, DOI 10.1590/S1516-31802011000200004
  16. Dong X, 2017, PREGNANCY HYPERTENS, V8, P60, DOI 10.1016/j.preghy.2017.03.005
  17. Fogarty NME, 2013, AM J PATHOL, V183, P144, DOI 10.1016/j.ajpath.2013.03.016
  18. Fu JH, 2015, TAIWAN J OBSTET GYNE, V54, P19, DOI 10.1016/j.tjog.2014.11.002
  19. Hahn S, 2011, PLACENTA, V32, pS17, DOI 10.1016/j.placenta.2010.06.018
  20. Ibrahim IM, 2019, LIFE SCI, V226, P156, DOI 10.1016/j.lfs.2019.04.022
  21. Kelestemur S, 2017, APPL SPECTROSC, V71, P1180, DOI 10.1177/0003702816670916
  22. Kolarova TR, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.121.021477
  23. Lorenzon AR, 2021, CURR VASC PHARMACOL, V19, P201, DOI 10.2174/1570161118666200606222123
  24. Lorenzon-Ojea AR, 2020, BBA-MOL BASIS DIS, V1866, DOI 10.1016/j.bbadis.2019.01.012
  25. Lorenzon-Ojea AR, 2016, BIOL REPROD, V95, DOI 10.1095/biolreprod.115.138164
  26. Loukeris K, 2010, PEDIATR DEVEL PATHOL, V13, P305, DOI 10.2350/09-08-0692-OA.1
  27. Mayor-Lynn K, 2011, REPROD SCI, V18, P46, DOI 10.1177/1933719110374115
  28. McCullough KD, 2001, MOL CELL BIOL, V21, P1249, DOI 10.1128/MCB.21.4.1249-1259.2001
  29. Metcalf MG, 2020, SCI ADV, V6, DOI 10.1126/sciadv.abb9614
  30. MIKHAIL MS, 1994, AM J OBSTET GYNECOL, V171, P150, DOI 10.1016/0002-9378(94)90462-6
  31. Miller RK, 2005, PLACENTA, V26, P439, DOI 10.1016/j.placenta.2004.10.002
  32. Mochan Sankat, 2019, Eur J Obstet Gynecol Reprod Biol X, V4, P100070, DOI 10.1016/j.eurox.2019.100070
  33. Mori T, 2014, HYPERTENS RES, V37, P145, DOI 10.1038/hr.2013.131
  34. Movasaghi Z, 2007, APPL SPECTROSC REV, V42, P493, DOI 10.1080/05704920701551530
  35. Nguyen AH, 2017, REV ANAL CHEM, V36, DOI 10.1515/revac-2016-0037
  36. Nikuei P, 2015, INT J REPROD BIOMED, V13, P251
  37. Oyadomari S, 2004, CELL DEATH DIFFER, V11, P381, DOI 10.1038/sj.cdd.4401373
  38. Palan PR, 2001, OBSTET GYNECOL, V98, P459, DOI 10.1016/S0029-7844(01)01437-5
  39. Park J, 2011, EXP MOL MED, V43, P427, DOI 10.3858/emm.2011.43.7.047
  40. Philippe C, 2016, SCI SIGNAL, V9, DOI 10.1126/scisignal.aaf2753
  41. Rasmussen S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181016
  42. Redman CWG, 2022, AM J OBSTET GYNECOL, V226, pS907, DOI 10.1016/j.ajog.2020.09.047
  43. Roberts JM, 1998, SEMIN REPROD ENDOCR, V16, P5, DOI 10.1055/s-2007-1016248
  44. Sano R, 2013, BBA-MOL CELL RES, V1833, P3460, DOI 10.1016/j.bbamcr.2013.06.028
  45. Sarno L, 2015, HYPERTENS PREGNANCY, V34, P284, DOI 10.3109/10641955.2015.1015731
  46. Scriven P, 2009, BRIT J CANCER, V101, P1692, DOI 10.1038/sj.bjc.6605365
  47. Sibai B, 2005, LANCET, V365, P785, DOI 10.1016/S0140-6736(05)71003-5
  48. Stahl W, 2003, MOL ASPECTS MED, V24, P345, DOI 10.1016/S0098-2997(03)00030-X
  49. Stepan H, 2015, ULTRASOUND OBST GYN, V45, P241, DOI 10.1002/uog.14799
  50. Surmacki J, 2015, ANALYST, V140, P2121, DOI 10.1039/c4an01876a
  51. Talari ACS, 2015, J RAMAN SPECTROSC, V46, P421, DOI 10.1002/jrs.4676
  52. Tomimatsu T, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20174246
  53. Walter P, 2011, SCIENCE, V334, P1081, DOI 10.1126/science.1209038
  54. Wang A, 2009, PHYSIOLOGY, V24, P147, DOI 10.1152/physiol.00043.2008
  55. Xu CY, 2005, J CLIN INVEST, V115, P2656, DOI 10.1172/JCI26373
  56. Yang YZ, 2016, CELL TISSUE RES, V363, P589, DOI 10.1007/s00441-015-2212-x
  57. Yoshida H, 2007, FEBS J, V274, P630, DOI 10.1111/j.1742-4658.2007.05639.x
  58. Yung HW, 2014, J PATHOL, V234, P262, DOI 10.1002/path.4394
  59. Zarate A, 2014, ARCH MED RES, V45, P519, DOI 10.1016/j.arcmed.2014.10.003
  60. Zinszner H, 1998, GENE DEV, V12, P982, DOI 10.1101/gad.12.7.982