Microcephaly measurement in adults and its association with clinical variables

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
REVISTA DE SAUDE PUBLICA
Citação
REVISTA DE SAUDE PUBLICA, v.56, article ID 38, 10p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE: To establish a microcephaly cut-off size in adults using head circumference as an indirect measure of brain size, as well as to explore factors associated with microcephaly via data mining. METHODS: In autopsy studies, head circumference was measured with an inelastic tape placed around the skull. Total brain volume was also directly measured. A linear regression was used to determine the association of head circumference with brain volume and clinical variables. Microcephaly was defined as head circumference that were two standard deviations below the mean of significant clinical variables. We further applied an association rule mining to find rules associating microcephaly with several sociodemographic and clinical variables. RESULTS: In our sample of 2,508 adults, the mean head circumference was 55.3 +/- 2.7cm. Head circumference was related to height, cerebral volume, and sex (p < 0.001 for all). Microcephaly was present in 4.7% of the sample (n = 119). Out of 34,355 association rules, we found significant relationships between microcephaly and a clinical dementia rating (CDR) > 0.5 with an informant questionnaire on cognitive decline in the elderly (IQCODE) = 3.4 (confidence: 100% and lift: 5.6), between microcephaly and a CDR > 0.5 with age over 70 years (confidence: 42% and lift: 2.4), and microcephaly and males (confidence: 68.1% and lift: 1.3). CONCLUSION: Head circumference was related to cerebral volume. Due to its low cost and easy use, head circumference can be used as a screening test for microcephaly, adjusting it for gender and height. Microcephaly was associated with dementia at old age.
Palavras-chave
Adult, Microcephaly classification, Cephalometry, Dementia, Data Mining
Referências
  1. Abuelo Dianne, 2007, Semin Pediatr Neurol, V14, P118, DOI 10.1016/j.spen.2007.07.003
  2. Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170035.170072
  3. Ashwal S, 2009, NEUROLOGY, V73, P887, DOI 10.1212/WNL.0b013e3181b783f7
  4. Baare WFC, 2001, CEREB CORTEX, V11, P816, DOI 10.1093/cercor/11.9.816
  5. Bartholomeusz HH, 2002, NEUROPEDIATRICS, V33, P239, DOI 10.1055/s-2002-36735
  6. Bzdok D, 2018, BIOL PSYCHIAT-COGN N, V3, P223, DOI 10.1016/j.bpsc.2017.11.007
  7. Chang S, 2017, INT J GERIATR PSYCH, V32, pE1, DOI 10.1002/gps.4643
  8. Chelly J, 2001, NAT REV GENET, V2, P669, DOI 10.1038/35088558
  9. Ferretti Renata Eloah de Lucena, 2010, Dement. neuropsychol., V4, P138, DOI 10.1590/S1980-57642010DN40200011
  10. Ferretti-Rebustini Renata Eloah de Lucena, 2015, Dement. neuropsychol., V9, P103, DOI 10.1590/1980-57642015DN92000004
  11. Graves AB, 1996, BRIT J PSYCHIAT, V169, P86, DOI 10.1192/bjp.169.1.86
  12. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  13. Harrison JK, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011333.pub2
  14. Hshieh TT, 2016, INT PSYCHOGERIATR, V28, P157, DOI 10.1017/S104161021500037X
  15. ILLINGWO.RS, 1971, ACTA PAEDIATR SCAND, V60, P333, DOI 10.1111/j.1651-2227.1971.tb06666.x
  16. ISHIKAWA T, 1987, ACTA PAEDIATR SCAND, V76, P824, DOI 10.1111/j.1651-2227.1987.tb10571.x
  17. JORM AF, 1994, PSYCHOL MED, V24, P145, DOI 10.1017/S003329170002691X
  18. Joshi S, 2006, MED CLIN N AM, V90, P769, DOI 10.1016/j.mcna.2006.05.014
  19. Kac G, 1999, Cad Saude Publica, V15, P451, DOI 10.1590/S0102-311X1999000300002
  20. KATZMAN R, 1988, ANN NEUROL, V23, P138, DOI 10.1002/ana.410230206
  21. KONISHI M, 1995, ANTHROPOL SCI, V103, P279, DOI 10.1537/ase.103.279
  22. Krauss MJ, 2003, AM J OBSTET GYNECOL, V188, P1484, DOI 10.1067/mob.2003.452
  23. Librenza-Garcia D, 2017, NEUROSCI BIOBEHAV R, V80, P538, DOI 10.1016/j.neubiorev.2017.07.004
  24. MORRIS JC, 1993, NEUROLOGY, V43, P2412, DOI 10.1212/WNL.43.11.2412-a
  25. Mortimer JA, 2003, J CLIN EXP NEUROPSYC, V25, P671, DOI 10.1076/jcen.25.5.671.14584
  26. Nunes PV, 2018, J AFFECT DISORDERS, V241, P176, DOI 10.1016/j.jad.2018.08.025
  27. Nunes PV, 2018, INT J GERIATR PSYCH, V33, P14, DOI 10.1002/gps.4649
  28. OPITZ JM, 1990, J CRAN GENET DEV BIO, V10, P175
  29. OUNSTED M, 1985, ARCH DIS CHILD, V60, P936, DOI 10.1136/adc.60.10.936
  30. Raz N, 2006, NEUROSCI BIOBEHAV R, V30, P730, DOI 10.1016/j.neubiorev.2006.07.001
  31. ROCHE AF, 1986, HUM BIOL, V58, P893
  32. Son SJ, 2012, ARCH GERONTOL GERIAT, V54, P343, DOI 10.1016/j.archger.2011.05.025
  33. Suemoto CK, 2013, INT J GERIATR PSYCH, V28, P487, DOI 10.1002/gps.3850
  34. Tie K, 2012, ARTHROSCOPY, V28, P1464, DOI 10.1016/j.arthro.2012.04.053
  35. Wang F, 2019, NEUROEPIDEMIOLOGY, V53, P152, DOI 10.1159/000501103
  36. WEAVER DD, 1980, J PEDIATR-US, V96, P990, DOI 10.1016/S0022-3476(80)80623-8
  37. Woodward M, 2003, DIABETES CARE, V26, P360
  38. World Health Organization, 2021, HEAD CIRCUMFERENCE F