Transcriptomic analysis reveals distinct adaptive molecular mechanism in the hippocampal CA3 from rats susceptible or not-susceptible to hyperthermia-induced seizures

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
Citação
SCIENTIFIC REPORTS, v.13, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Febrile seizures during early childhood are a relevant risk factor for the development of mesial temporal lobe epilepsy. Nevertheless, the molecular mechanism induced by febrile seizures that render the brain susceptible or not-susceptible to epileptogenesis remain poorly understood. Because the temporal investigation of such mechanisms in human patients is impossible, rat models of hyperthermia-induced febrile seizures have been used for that purpose. Here we conducted a temporal analysis of the transcriptomic and microRNA changes in the ventral CA3 of rats that develop (HS group) or not-develop (HNS group) seizures after hyperthermic insult on the eleventh postnatal day. The selected time intervals corresponded to acute, latent, and chronic phases of the disease. We found that the transcriptional differences between the HS and the HNS groups are related to inflammatory pathways, immune response, neurogenesis, and dendritogenesis in the latent and chronic phases. Additionally, the HNS group expressed a greater number of miRNAs (some abundantly expressed) as compared to the HS group. These results indicate that HNS rats were able to modulate their inflammatory response after insult, thus presenting better tissue repair and re-adaptation. Potential therapeutic targets, including genes, miRNAs and signaling pathways involved in epileptogenesis were identified.
Palavras-chave
Referências
  1. Ahmad S, 2010, SEMIN PEDIATR NEUROL, V17, P150, DOI 10.1016/j.spen.2010.06.004
  2. Atkin G, 2014, J BIOL CHEM, V289, P7038, DOI 10.1074/jbc.M113.515056
  3. Azevedo H, 2018, DIS MODEL MECH, V11, DOI 10.1242/dmm.029074
  4. Bando SY, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026268
  5. Bando SY, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-89802-3
  6. Bando SY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079913
  7. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  8. Baram TZ, 1997, DEV BRAIN RES, V98, P265, DOI 10.1016/S0165-3806(96)00190-3
  9. Baulac M, 2015, REV NEUROL-FRANCE, V171, P259, DOI 10.1016/j.neurol.2015.02.004
  10. Baulac S, 2004, LANCET NEUROL, V3, P421, DOI 10.1016/S1474-4422(04)00808-7
  11. Bender RA, 2004, ADV EXP MED BIOL, V548, P213
  12. Bender RA, 2003, HIPPOCAMPUS, V13, P399, DOI 10.1002/hipo.10089
  13. Borghi R, 2021, J CLIN MED, V10, DOI 10.3390/jcm10132754
  14. Brennan GP, 2020, NAT REV NEUROL, V16, P506, DOI 10.1038/s41582-020-0369-8
  15. Brennan GP, 2016, CELL REP, V14, P2402, DOI 10.1016/j.celrep.2016.02.042
  16. Butler KM, 2018, BRAIN, V141, P2392, DOI 10.1093/brain/awy171
  17. Canto AM, 2021, HIPPOCAMPUS, V31, P122, DOI 10.1002/hipo.23268
  18. Chen EY, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-128
  19. Colmers William F., 2003, Epilepsy Curr, V3, P53, DOI 10.1046/j.1535-7597.2003.03208.x
  20. Dube C, 2006, BRAIN, V129, P911, DOI 10.1093/brain/awl018
  21. Dube C, 2000, ANN NEUROL, V47, P336, DOI 10.1002/1531-8249(200003)47:3<336::AID-ANA9>3.3.CO;2-N
  22. Dube C. M., 2012, JASPERS BASIC MECH E
  23. Dube CM, 2010, J NEUROSCI, V30, P7484, DOI 10.1523/JNEUROSCI.0551-10.2010
  24. Dube CM, 2009, EXP NEUROL, V215, P167, DOI 10.1016/j.expneurol.2008.10.003
  25. El Ghaleb Y, 2021, BRAIN, V144, P2092, DOI 10.1093/brain/awab101
  26. Engel J, 2001, NEUROSCIENTIST, V7, P340, DOI 10.1177/107385840100700410
  27. Feng Y, 2022, SEIZURE-EUR J EPILEP, V101, P22, DOI 10.1016/j.seizure.2022.07.007
  28. Ferrer I, 2016, FRONT AGING NEUROSCI, V8, DOI 10.3389/fnagi.2016.00163
  29. Ghafouri-Fard S, 2022, MOL BIOL REP, V49, P5057, DOI 10.1007/s11033-022-07188-5
  30. Giovedi S, 2014, FRONT PEDIATR, V2, DOI 10.3389/fped.2014.00094
  31. Gonzalez-Calvo I, 2021, ELIFE, V10, DOI 10.7554/eLife.65712
  32. Gonzalez-Ramirez M, 2009, SEIZURE-EUR J EPILEP, V18, P533, DOI 10.1016/j.seizure.2009.04.011
  33. Gorter JA, 2006, J NEUROSCI, V26, P11083, DOI 10.1523/JNEUROSCI.2766-06.2006
  34. Hishimoto A, 2019, ALZHEIMERS RES THER, V11, DOI 10.1186/s13195-019-0475-2
  35. Iyer AM, 2010, NEUROSCIENCE, V167, P929, DOI 10.1016/j.neuroscience.2010.02.047
  36. Jin Y, 2016, BIOL RES, V49, DOI 10.1186/s40659-015-0060-5
  37. Kessi M, 2021, ORPHANET J RARE DIS, V16, DOI 10.1186/s13023-021-01850-0
  38. Kirbach BB, 2011, J NEUROSCI RES, V89, P162, DOI 10.1002/jnr.22536
  39. Kopczynska M, 2018, SEIZURE-EUR J EPILEP, V60, P1, DOI 10.1016/j.seizure.2018.05.016
  40. Kuleshov MV, 2016, NUCLEIC ACIDS RES, V44, pW90, DOI 10.1093/nar/gkw377
  41. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  42. Lemmens EMP, 2005, EPILEPSIA, V46, P1603, DOI 10.1111/j.1528-1167.2005.00252.x
  43. Marek KW, 2010, NAT NEUROSCI, V13, P944, DOI 10.1038/nn.2582
  44. McClelland S, 2011, NEUROSCI LETT, V497, P155, DOI 10.1016/j.neulet.2011.02.032
  45. Mo J, 2015, J NEUROCHEM, V133, P489, DOI 10.1111/jnc.13077
  46. Mohler H, 2006, CELL TISSUE RES, V326, P505, DOI 10.1007/s00441-006-0284-3
  47. Monterrat C, 2006, BBA-MOL CELL RES, V1763, P73, DOI 10.1016/j.bbamcr.2005.11.008
  48. Moreira CA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128174
  49. NEDIVI E, 1993, NATURE, V363, P718, DOI 10.1038/363718a0
  50. Oh S. June, 2018, Genomics & Informatics, V16, P2, DOI 10.5808/GI.2018.16.1.2
  51. Patterson KP, 2015, ENEURO, V2, DOI 10.1523/ENEURO.0034-15.2015
  52. Patterson KP, 2014, NEUROTHERAPEUTICS, V11, P242, DOI 10.1007/s13311-014-0263-4
  53. R Core Team, 2020, R LANG ENV STAT COMP
  54. Raijmakers M, 2016, EPILEPSIA, V57, P717, DOI 10.1111/epi.13357
  55. Restrepo S, 2019, J NEUROSCI, V39, P9065, DOI 10.1523/JNEUROSCI.1261-19.2019
  56. Riise J, 2015, J NEURAL TRANSM, V122, P1303, DOI 10.1007/s00702-015-1375-7
  57. Saeed AI, 2003, BIOTECHNIQUES, V34, P374, DOI 10.2144/03342mt01
  58. Sanz P, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21114096
  59. Schubert KO, 2012, MOL PSYCHIATR, V17, P669, DOI 10.1038/mp.2011.123
  60. Smyth GK, 2005, STAT BIOL HEALTH, P397, DOI 10.1007/0-387-29362-0_23
  61. Sugaya Y, 2022, FRONT NEURAL CIRCUIT, V15, DOI 10.3389/fncir.2021.781113
  62. Sun HW, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.844141
  63. Sun J, 2017, INT J MOL MED, V39, P1338, DOI 10.3892/ijmm.2017.2962
  64. Sun WY, 2020, MOL NEUROBIOL, V57, P5044, DOI 10.1007/s12035-020-02069-z
  65. Toyoda I, 2013, J NEUROSCI, V33, P11100, DOI 10.1523/JNEUROSCI.0472-13.2013
  66. van Dam S, 2018, BRIEF BIOINFORM, V19, P575, DOI 10.1093/bib/bbw139
  67. Vestergaard M, 2007, AM J EPIDEMIOL, V165, P911, DOI 10.1093/aje/kwk086
  68. Vezzani A, 2019, NAT REV NEUROL, V15, P459, DOI 10.1038/s41582-019-0217-x
  69. Wang W, 2016, EXPERT REV MOL MED, V18, DOI 10.1017/erm.2016.3
  70. Wang YS, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.596709
  71. Wu CP, 2005, NEUROSCIENCE, V130, P527, DOI 10.1016/j.neuroscience.2004.09.041
  72. Wu D, 2022, SCI ADV, V8, DOI 10.1126/sciadv.abm3381
  73. Wu L, 2018, NEUROCHEM RES, V43, P1269, DOI 10.1007/s11064-018-2544-5
  74. Wu XN, 2020, NEUROSCIENTIST, V26, P9, DOI 10.1177/1073858419844497
  75. Yepes M, 2019, CURR DRUG TARGETS, V20, P953, DOI 10.2174/1389450120666181211144550
  76. Yu Y, 2019, PROG NEUROBIOL, V183, DOI 10.1016/j.pneurobio.2019.101682
  77. ZHAO DY, 1985, EXP NEUROL, V88, P688, DOI 10.1016/0014-4886(85)90080-9
  78. Zhu HX, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11172621