Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Citação
SCIENCE OF THE TOTAL ENVIRONMENT, v.575, p.1438-1444, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Urban gardening is a growing global phenomenon with a positive impact on society. Despite several associated benefits, growing vegetables in urban gardens that are localized in highly polluted areas poses questions about the safety of the produced food. Therefore, the identification of risk factors that result in possible deleterious effects to human health is important for realizing all of the benefits to society. We evaluated the use of two-biomonitoring methods in ten urban gardens of Sao Paulo city and one control site: the micronuclei frequencies for early tetrads of Tradescantia pallida (Rose) Hunt. cv. ""Purpurea"" Boom(hereafter, Trad-MCN) as a short-term indicator of genotoxic response and tree barks to quantify the accumulation of traffic-related chemical elements as a long-term biomarker of air pollution in urban gardens. Mature plants of Tradescantia pallida were exposed in each garden, and their inflorescences were sampled over three months. A random set of 300 early tetrads in 13 to 21 slides per garden were evaluated for micronuclei frequencies. Elemental concentrations in 428 tree barks samples from 107 different trees in the areas surrounding urban gardens were quantified using an energy dispersive X-ray fluorescence spectrometer. The frequency of Trad-MCN has a significant correlation with traffic variables and chemical elements related to road dust and tailpipe emissions deposited in tree barks. Negative associations between Trad-MCN and both the distance through traffic and the presence of vertical obstacles were observed in the community gardens. The Mn/Zn concentrations in tree barks were associated with increased Trad-MCN.
Palavras-chave
Community gardens, Biomonitoring, Micronucleus, Genotoxicity, Chemical elements, Urban environmental, Tree barks
Referências
  1. Amato-Lourenco LF, 2016, ENVIRON POLLUT, V216, P125, DOI 10.1016/j.envpol.2016.05.036
  2. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  3. Bendt P, 2013, LANDSCAPE URBAN PLAN, V109, P18, DOI 10.1016/j.landurbplan.2012.10.003
  4. Beyer WN, 2013, ENVIRON POLLUT, V179, P167, DOI 10.1016/j.envpol.2013.04.013
  5. Cameron RWF, 2012, URBAN FOR URBAN GREE, V11, P129, DOI 10.1016/j.ufug.2012.01.002
  6. Carneiro MFH, 2011, ENVIRON EXP BOT, V72, P272, DOI 10.1016/j.envexpbot.2011.04.001
  7. Carvalho-Oliveira R., 2005, BRAZIL ENV RES, V98, P1, DOI 10.1016/J.ENVRES.2004.05.007
  8. Catinon M, 2012, ECOL INDIC, V14, P170, DOI 10.1016/j.ecolind.2011.07.013
  9. CET Traffic Engineering Company, 2013, PESQ MON FLUID DES S, P1
  10. CETESB Sao Paulo State Environmental Agency, 2015, QUAL AR EST SAO PAUL
  11. CoDyre M, 2015, URBAN FOR URBAN GREE, V14, P72, DOI 10.1016/j.ufug.2014.11.001
  12. de Miranda RM, 2002, ATMOS ENVIRON, V36, P345, DOI 10.1016/S1352-2310(01)00363-6
  13. De Temmerman L, 2015, ENVIRON POLLUT, V199, P83, DOI 10.1016/j.envpol.2015.01.014
  14. De Bruin Wolterbeek, 1984, P 5 INT C NUCL METH, P266
  15. Ejidike I.P., 2015, J ANAL METHODS CHEM, V2015
  16. Ernwein M, 2014, GEOFORUM, V56, P77, DOI 10.1016/j.geoforum.2014.06.016
  17. Garg BD, 2000, ENVIRON SCI TECHNOL, V34, P4463, DOI 10.1021/es001108h
  18. Gueguen F, 2012, CHEMOSPHERE, V86, P1013, DOI 10.1016/j.chemosphere.2011.11.040
  19. Guimaraes ET, 2000, ENVIRON EXP BOT, V44, P1, DOI 10.1016/S0098-8472(00)00050-2
  20. Guitart DA, 2014, HEALTH PLACE, V26, P110, DOI 10.1016/j.healthplace.2013.12.014
  21. Kabata-Pendias A.T., 2011, ELEMENTS SOILS PLANT
  22. Klumpp A, 2006, ENVIRON POLLUT, V139, P515, DOI 10.1016/j.envpol.2005.05.021
  23. Moreira TCL, 2016, ENVIRON INT, V91, P271, DOI 10.1016/j.envint.2016.03.005
  24. Lough GC, 2005, ENVIRON SCI TECHNOL, V39, P826, DOI 10.1021/es048715f
  25. Lukaszkiewicz Jan, 2008, Arboriculture & Urban Forestry, V34, P137
  26. MA T-H, 1981, Environmental Health Perspectives, V37, P85, DOI 10.2307/3429254
  27. Faggi AM, 2011, ENVIRON MONIT ASSESS, V178, P237, DOI 10.1007/s10661-010-1685-z
  28. Pereira BB, 2013, ECOTOX ENVIRON SAFE, V87, P17, DOI 10.1016/j.ecoenv.2012.10.003
  29. Saumel I, 2012, ENVIRON POLLUT, V165, P124, DOI 10.1016/j.envpol.2012.02.019
  30. Sawidis T, 2011, ENVIRON POLLUT, V159, P3560, DOI 10.1016/j.envpol.2011.08.008
  31. Schauer J.J., 2006, HLTH EFFECT I, V133, P1
  32. SLOOF JE, 1993, ENVIRON MONIT ASSESS, V25, P149, DOI 10.1007/BF00549136
  33. Sternbeck J, 2002, ATMOS ENVIRON, V36, P4735, DOI 10.1016/S1352-2310(02)00561-7
  34. Suzuki K, 2006, ATMOS ENVIRON, V40, P2626, DOI 10.1016/j.atmosenv.2005.12.022
  35. Tsilini V, 2015, SUSTAIN CITIES SOC, V14, P323, DOI 10.1016/j.scs.2014.08.006
  36. Sposito JCV, 2015, ECOTOX ENVIRON SAFE, V120, P445, DOI 10.1016/j.ecoenv.2015.06.031
  37. von Hoffen LP, 2014, ECOTOX ENVIRON SAFE, V101, P233, DOI 10.1016/j.ecoenv.2013.11.023
  38. WHO, 2006, WHO AIR QUAL GUID PA
  39. Wolterbeek HT, 1995, SCI TOTAL ENVIRON, V176, P33, DOI 10.1016/0048-9697(95)04828-6