A common variant close to the ""tripwire"" linker region of <i>NLRP1</i> contributes to severe COVID-19

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER BASEL AG
Autores
LEAL, Vinicius N. C.
PAULINO, Leandro M.
CAMBUI, Raylane A. G.
ZUPELLI, Thiago G.
YAMADA, Suemy M.
OLIVEIRA, Leonardo A. T.
DUTRA, Valeria de F.
BUB, Carolina B.
SAKASHITA, Araci M.
YOKOYAMA, Ana Paula H.
Citação
INFLAMMATION RESEARCH, v.72, n.10-11, p.1933-1940, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective and design The heterogeneity of response to SARS-CoV-2 infection is directly linked to the individual genetic background. Genetic variants of inflammasome-related genes have been pointed as risk factors for several inflammatory sterile and infectious disease. In the group of inflammasome receptors, NLRP1 stands out as a good novel candidate as severity factor for COVID-19 disease. Methods To address this question, we performed an association study of NLRP1, DPP9, CARD8, IL1B, and IL18 single nucleotide variants (SNVs) in a cohort of 945 COVID-19 patients. Results The NLRP1 p.Leu155His in the linker region, target of viral protease, was significantly associated to COVID-19 severity, which could contribute to the excessive cytokine release reported in severe cases. Conclusion Inflammasome genetic background contributes to individual response to SARS-CoV-2.
Palavras-chave
NLRP1, COVID-19, Inflammasome, SARS-CoV-2, SNV
Referências
  1. Bittner ZA, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11101717
  2. Costa FRC, 2021, CELL REP, V35, DOI 10.1016/j.celrep.2021.109176
  3. Declercq J, 2022, CYTOKINE, V157, DOI 10.1016/j.cyto.2022.155934
  4. Frayling TM, 2007, J GERONTOL A-BIOL, V62, P73, DOI 10.1093/gerona/62.1.73
  5. Hall SK, 2004, ARTHRITIS RHEUM-US, V50, P1976, DOI 10.1002/art.20310
  6. He MA, 2010, ARTERIOSCL THROM VAS, V30, P885, DOI 10.1161/ATVBAHA.109.199422
  7. Levandowski CB, 2013, P NATL ACAD SCI USA, V110, P2952, DOI 10.1073/pnas.1222808110
  8. Li XC, 2020, J ALLERGY CLIN IMMUN, V146, P110, DOI 10.1016/j.jaci.2020.04.006
  9. Liu J, 2020, EBIOMEDICINE, V55, DOI 10.1016/j.ebiom.2020.102763
  10. Magitta NF, 2009, GENES IMMUN, V10, P120, DOI 10.1038/gene.2008.85
  11. Mantovani A, 2019, IMMUNITY, V50, P778, DOI 10.1016/j.immuni.2019.03.012
  12. MILLER SA, 1988, NUCLEIC ACIDS RES, V0016
  13. Planes R., 2022, MOL CELL
  14. Richardson S, 2020, JAMA-J AM MED ASSOC, V323, P2052, DOI 10.1001/jama.2020.6775
  15. Robinson KS, 2020, SCIENCE, V370, P1182, DOI 10.1126/science.aay2002
  16. Ruhl L, 2021, SIGNAL TRANSDUCT TAR, V6, DOI 10.1038/s41392-021-00819-6
  17. Sun XX, 2019, J DIABETES RES, V2019, DOI 10.1155/2019/7405120
  18. Taabazuing CY, 2020, IMMUNOL REV, V297, P13, DOI 10.1111/imr.12884
  19. Tsu BV, 2021, ELIFE, V10, DOI 10.7554/eLife.60609
  20. Vasseur E, 2012, AM J HUM GENET, V91, P27, DOI 10.1016/j.ajhg.2012.05.008
  21. Wang QK, 2021, SCIENCE, V371, P1224, DOI 10.1126/science.abe1707
  22. Zhang Q, 2022, NATURE, V603, P587, DOI 10.1038/s41586-022-04447-0
  23. Zhong FL, 2018, J BIOL CHEM, V293, P18864, DOI 10.1074/jbc.RA118.004350
  24. Zhou F, 2020, LANCET, V395, P1054, DOI 10.1016/S0140-6736(20)30566-3