Morphological and functional cardiac alterations in children with congenital Zika syndrome and severe neurological deficits

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
GOMES, Luizabel de Paula
FEITOSA, Israel Nilton de Almeida
BARBOSA, Alex
ARAUJO, Andre Telis de Vilela
MELO, Marcelo Dantas Tavares de
MELO, Adriana Suely de Oliveira
Citação
PLOS NEGLECTED TROPICAL DISEASES, v.17, n.11, article ID e0011762, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionZika virus infection during pregnancy causes fetal microcephaly and brain damage. Congenital Zika syndrome (CZS) is characterized by systemic involvement with diffuse muscle impairment, a high frequency of arthrogryposis, and microphthalmia. Cardiac impairment in CZS has rarely been evaluated. Our study assessed morphology and biventricular cardiac function in children with CZS and advanced neurological dysfunction.Methods This cross-sectional study was conducted on 52 children with CZS (Zika group; ZG) and 25 healthy children (control group; CG) in Paraiba, Brazil. Clinical evaluation, electrocardiogram (EKG), and transthoracic echocardiogram (TTE) were performed on all children. Additionally, troponin I and natriuretic peptide type B (BNP) levels, the degree of cerebral palsy, and neuroimaging findings were assessed in the ZG group.Results The median age of the study population was 5 years in both groups, and 40.4% (ZG) and 60% (CG) were female. The most prevalent electrocardiographic alteration was sinus arrhythmia in both the ZG (n = 9, 17.3%) and CG (n = 4, 16%). The morphological parameters adjusted for Z score were as follows: left ventricular (LV) end-diastolic diameter in ZG: -2.36 [-5.10, 2.63] vs. CG: -1.07 [-3.43, 0.61], p<0.001); ascending aorta (ZG: -0.09 [-2.08, 1.60] vs. CG: 0.43 [-1.47, 2.2], p = 0.021); basal diameter of the right ventricle (RV) (ZG: -2.34 [-4.90, 0.97] vs. CG: -0.96 [-2.21, 0.40], p<0.01); and pulmonary artery dimension (ZG: -2.13 [-5.99, 0.98] vs. CG: -0.24 [-2.53, 0.59], p<0.01). The ejection fractions (%) were 65.7 and 65.6 in the ZG and CG, respectively (p = 0.968). The left atrium volume indices (mL/m2) in the ZG and CG were 13.15 [6.80, 18.00] and 18.80 [5.90, 25.30] (p<0.01), respectively, and the right atrium volume indices (mL/m2) were 10.10 [4.90, 15.30] and 15.80 [4.10, 24.80] (p<0.01). The functional findings adjusted for Z score were as follows: lateral systolic excursion of the mitral annular plane (MAPSE) (ZG: 0.36 [-2.79, 4.71] vs. CG: 1.79 [-0.93, 4.5], p = 0.001); tricuspid annular plane systolic excursion (TAPSE) (ZG: -2.43 [-5.47, 5.09] vs. CG: 0.07 [-1.98, 3.64], p<0.001); and the S' of the RV (ZG: 1.20 [3.35, 2.90] vs. CG: -0.20 [-2.15, 1.50], p = 0.0121). No differences in biventricular strain measurements were observed between the groups. Troponin I and BNP levels were normal in in the ZG. Grade V cerebral palsy and subcortical calcification were found in 88.6% and 97.22% of children in the ZG group, respectively.Conclusion A reduction in cardiac dimensions and functional changes were found in CZS patients, based on the TAPSE, S' of the RV, and MAPSE, suggesting the importance of cardiac evaluation and follow-up in this group of patients.
Palavras-chave
Referências
  1. Ticona JPA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0256444
  2. Angelidou A, 2018, NEONATOLOGY, V113, P177, DOI 10.1159/000484656
  3. Aragao MFVV, 2017, AM J NEURORADIOL, V38, P1427, DOI 10.3174/ajnr.A5216
  4. Arrais NMR, 2021, ACTA PAEDIATR, V110, P3343, DOI 10.1111/apa.16063
  5. Arvedson JC, 2013, EUR J CLIN NUTR, V67, pS9, DOI 10.1038/ejcn.2013.224
  6. Chimelli L, 2017, ACTA NEUROPATHOL, V133, P983, DOI 10.1007/s00401-017-1699-5
  7. Clerico A, 2022, CLIN CHEM LAB MED, V60, P18, DOI 10.1515/cclm-2021-0976
  8. de Aguiar EB., 2022, Viruses, V14, P1
  9. Melo ASD, 2016, JAMA NEUROL, V73, P1407, DOI 10.1001/jamaneurol.2016.3720
  10. de Oliveira-Szejnfeld PS, 2016, RADIOLOGY, V281, P203, DOI 10.1148/radiol.2016161584
  11. Di Cavalcanti D, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175065
  12. Duffy MR, 2009, NEW ENGL J MED, V360, P2536, DOI 10.1056/NEJMoa0805715
  13. Scatularo CE, 2022, TRENDS CARDIOVAS MED, V32, P52, DOI 10.1016/j.tcm.2020.11.003
  14. Forsey J, 2013, ECHOCARDIOGR-J CARD, V30, P447, DOI 10.1111/echo.12131
  15. Gatherer D, 2016, J GEN VIROL, V97, P269, DOI 10.1099/jgv.0.000381
  16. Gavino-Leopoldino D, 2021, J VIROL, V95, DOI 10.1128/JVI.00904-21
  17. Hayes EB, 2009, EMERG INFECT DIS, V15, P1347, DOI 10.3201/eid1509.090442
  18. Jashari H, 2015, CARDIOVASC ULTRASOUN, V13, DOI 10.1186/s12947-015-0029-0
  19. Koestenberger M, 2012, AM HEART J, V164, P125, DOI 10.1016/j.ahj.2012.05.004
  20. Koestenberger M, 2012, AM J CARDIOL, V109, P116, DOI 10.1016/j.amjcard.2011.08.013
  21. Kurath-Koller S, 2019, CAN J CARDIOL, V35, P899, DOI 10.1016/j.cjca.2019.01.019
  22. Lanciotti RS, 2008, EMERG INFECT DIS, V14, P1232, DOI 10.3201/eid1408.080287
  23. Levine D, 2017, RADIOLOGY, V285, P744, DOI 10.1148/radiol.2017171238
  24. Mawad W, 2017, CURR OPIN CARDIOL, V32, P93, DOI 10.1097/HCO.0000000000000346
  25. Mehrjardi MZ, 2017, JPN J RADIOL, V35, P89, DOI 10.1007/s11604-016-0609-4
  26. Melo A, 2020, DEV MED CHILD NEUROL, V62, P221, DOI 10.1111/dmcn.14227
  27. Mitchell C, 2019, J AM SOC ECHOCARDIOG, V32, P1, DOI 10.1016/j.echo.2018.06.004
  28. Musso D, 2016, CLIN MICROBIOL REV, V29, P487, DOI 10.1128/CMR.00072-15
  29. Núñez-Gil IJ, 2011, REV ESP CARDIOL, V64, P674, DOI [10.1016/j.recesp.2011.04.006, 10.1016/j.rec.2011.04.005]
  30. Oehler E, 2014, Euro Surveill, V19
  31. Orofino DHG, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006362
  32. Paixao ES, 2022, NEW ENGL J MED, V386, P757, DOI 10.1056/NEJMoa2101195
  33. Palisano R, 1997, DEV MED CHILD NEUROL, V39, P214, DOI 10.1111/j.1469-8749.1997.tb07414.x
  34. Pires P, 2018, CHILD NERV SYST, V34, P957, DOI 10.1007/s00381-017-3682-9
  35. Ribeiro Bruno Niemeyer de Freitas, 2017, Radiol Bras, V50, P314, DOI 10.1590/0100-3984.2017.0098
  36. Rossi F, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239238
  37. Santana MB, 2019, CLIN MICROBIOL INFEC, V25, P1043, DOI 10.1016/j.cmi.2019.03.020
  38. Soares de Oliveira-Szejnfeld P., 2016, Radiology, V281, DOI [10.1148/radiol.2016161584, DOI 10.1148/RADIOL.2016161584]
  39. Song BH, 2017, J NEUROIMMUNOL, V308, P50, DOI 10.1016/j.jneuroim.2017.03.001
  40. Sugimoto M, 2015, WORLD J PEDIATR, V11, P309, DOI 10.1007/s12519-015-0039-x
  41. de Castro JDV, 2017, ARQ NEURO-PSIQUIAT, V75, P703, DOI [10.1590/0004-282X20170134, 10.1590/0004-282x20170134]
  42. Zanluca C, 2015, MEM I OSWALDO CRUZ, V110, P569