Early changes in myocyte contractility and cardiac function in streptozotocin-induced type 1 diabetes in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.15, n.8, article ID e0237305, 15p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Diabetes can elicit direct deleterious effects on the myocardium, independent of coronary artery disease or hypertension. These cardiac disturbances are termed diabetic cardiomyopathy showing increased risk of heart failure with or without reduced ejection fraction. Presently, there is no specific treatment for this type of cardiomyopathy and in the case of type I diabetes, it may start in early childhood independent of glycemic control. We hypothesized that alterations in isolated myocyte contractility and cardiac function are present in the early stages of experimental diabetes in rats before overt changes in myocardium structure occur. Diabetes was induced by single-dose injection of streptozotocin (STZ) in rats with data collected from control and diabetic animals 3 weeks after injection. Left ventricle myocyte contractility was measured by single-cell length variation under electrical stimulation. Cardiac function and morphology were studied by high-resolution echocardiography with pulsed-wave tissue Doppler imaging (TDI) measurements and three-lead surface electrocardiogram. Triglycerides, cholesterol and liver enzyme levels were measured from plasma samples obtained from both groups. Myocardial collagen content and perivascular fibrosis of atria and ventricle were studied by histological analysis after picrosirius red staining. Diabetes resulted in altered contractility of isolated cardiac myocytes with increased contraction and relaxation time intervals. Echocardiography showed left atrium dilation, increased end-diastolic LV and posterior wall thickness, with reduced longitudinal systolic peak velocity (S') of the septum mitral annulus at the apical four-chamber view obtained by TDI. Triglycerides, aspartate aminotransferase and alkaline phosphatase were elevated in diabetic animals. Intertitial collagen content was higher in atria of both groups and did not differ among control and diabetic animals. Perivascular intramyocardial arterioles collagen did not differ between groups. These results suggest that alterations in cardiac function are present in the early phase in this model of diabetes type 1 and occur before overt changes in myocardium structure appear as evaluated by intersticial collagen deposition and perivascular fibrosis of intramyocardial arterioles.
Palavras-chave
Referências
  1. [Anonymous], 2015, REV ORDENES MILITARE, VVIII, P181
  2. Becher PM, 2013, INT J MOL MED, V32, P158, DOI 10.3892/ijmm.2013.1368
  3. Bohne LJ, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00135
  4. Boudina S, 2007, CIRCULATION, V115, P3213, DOI 10.1161/CIRCULATIONAHA.106.679597
  5. Bugger H, 2009, DIS MODEL MECH, V2, P454, DOI 10.1242/dmm.001941
  6. Bulani Y, 2017, CARDIOVASC DRUG THER, V31, P255, DOI 10.1007/s10557-017-6732-3
  7. Cagalinec M, 2013, PHYSIOL RES, V62, P489, DOI 10.33549/physiolres.932467
  8. Strunz CMC, 2017, J NUTR BIOCHEM, V40, P219, DOI 10.1016/j.jnutbio.2016.11.015
  9. Choi KM, 2002, AM J PHYSIOL-HEART C, V283, pH1398, DOI 10.1152/ajpheart.00313.2002
  10. Delucchi F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039836
  11. DEVEREUX RB, 1986, AM J CARDIOL, V57, P450, DOI 10.1016/0002-9149(86)90771-X
  12. Dillmann WH, 2019, CIRC RES, V124, P1160, DOI 10.1161/CIRCRESAHA.118.314665
  13. Ding YF, 2006, ENDOCRINE, V30, P121, DOI 10.1385/ENDO:30:1:121
  14. Fiordaliso F, 2006, LIFE SCI, V79, P121, DOI 10.1016/j.lfs.2005.12.036
  15. Hopf AE, 2018, CIRC RES, V123, P342, DOI 10.1161/CIRCRESAHA.117.312166
  16. Howarth FC, 2009, MOL CELL BIOCHEM, V328, P57, DOI 10.1007/s11010-009-0074-9
  17. Hrapkiewicz K, 2013, CLIN LAB ANIMAL MED
  18. International Diabetes Federation, 2017, IDF DIABETES ATLAS
  19. Jia GH, 2018, DIABETOLOGIA, V61, P21, DOI 10.1007/s00125-017-4390-4
  20. KANNEL WB, 1974, AM J CARDIOL, V34, P29, DOI 10.1016/0002-9149(74)90089-7
  21. Karamitsos TD, 2007, INT J CARDIOL, V114, P218, DOI 10.1016/j.ijcard.2006.02.003
  22. Kenny HC, 2019, CIRC RES, V124, P121, DOI 10.1161/CIRCRESAHA.118.311371
  23. Kmecova J, 2010, EUR J PHARMACOL, V641, P187, DOI 10.1016/j.ejphar.2010.05.038
  24. LEGAYE F, 1988, LIFE SCI, V42, P2269, DOI 10.1016/0024-3205(88)90379-7
  25. Louch WE, 2011, J MOL CELL CARDIOL, V51, P288, DOI 10.1016/j.yjmcc.2011.06.012
  26. Malatiali S, 2017, MED PRIN PRACT, V26, P78, DOI 10.1159/000450864
  27. Malfitano C, 2015, CARDIOVASC DIABETOL, V14, DOI 10.1186/s12933-015-0308-y
  28. Malfitano C, 2014, CARDIOVASC DIABETOL, V13, DOI 10.1186/s12933-014-0131-x
  29. Marwick TH, 2018, J AM COLL CARDIOL, V71, P339, DOI 10.1016/j.jacc.2017.11.019
  30. Miki T, 2013, HEART FAIL REV, V18, P149, DOI 10.1007/s10741-012-9313-3
  31. PENPARGKUL S, 1981, J MOL CELL CARDIOL, V13, P303, DOI 10.1016/0022-2828(81)90318-7
  32. Pereira L, 2014, CELL CALCIUM, V56, P372, DOI 10.1016/j.ceca.2014.08.004
  33. Pires MD, 2003, ARTIF ORGANS, V27, P695, DOI 10.1046/j.1525-1594.2003.07276.x
  34. Riehle C, 2019, BASIC RES CARDIOL, V114, DOI 10.1007/s00395-018-0711-0
  35. Schaan BD, 1997, BRAZ J MED BIOL RES, V30, P1081, DOI 10.1590/S0100-879X1997000900006
  36. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  37. Shao CH, 2011, DIABETES, V60, P947, DOI 10.2337/db10-1145
  38. Sumita Y, 2020, J ECHOCARDIOGR, V18, P105, DOI 10.1007/s12574-019-00458-5
  39. Tate M, 2017, DIABETES VASC DIS RE, V14, P423, DOI 10.1177/1479164117710390
  40. TEICHHOLZ LE, 1976, AM J CARDIOL, V37, P7, DOI 10.1016/0002-9149(76)90491-4
  41. Teshima Y, 2000, J MOL CELL CARDIOL, V32, P655, DOI 10.1006/jmcc.2000.1107
  42. Trost SU, 2002, DIABETES, V51, P1166, DOI 10.2337/diabetes.51.4.1166
  43. Uysal F, 2014, PEDIATR INT, V56, P675, DOI 10.1111/ped.12329
  44. van Heerebeek L, 2008, CIRCULATION, V117, P43, DOI 10.1161/CIRCULATIONAHA.107.728550
  45. Vazeou A, 2008, EUR J PEDIATR, V167, P877, DOI 10.1007/s00431-007-0603-z
  46. Watanabe Y, 2001, BRIT J PHARMACOL, V132, P1317, DOI 10.1038/sj.bjp.0703926
  47. Wichi R, 2007, CARDIOVASC DIABETOL, V6, DOI 10.1186/1475-2840-6-14
  48. Zhang C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049257