Perspectives of bilateral thoracic sympathectomy for treatment of heart failure

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.76, article ID e3248, 6p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Surgical neuromodulation therapies are still considered a last resort when standard therapies have failed for patients with progressive heart failure (HF). Although a number of experimental studies have provided robust evidence of its effectiveness, the lack of strong clinical evidence discourages practitioners. Thoracic unilateral sympathectomy has been extensively studied and has failed to show significant clinical improvement in HF patients. Most recently, bilateral sympathectomy effect was associated with a high degree of success in HF models, opening the perspective to be investigated in randomized controlled clinical trials. In addition, a series of clinical trials showed that bilateral sympathectomy was associated with a decreased risk of sudden death, which is an important outcome in patients with HF. These aspects indicates that bilateral sympathectomy could be an important alternative in the treatment of HF wherein pharmacological treatment barely reaches the target dose.
Palavras-chave
Heart Failure, Sympathectomy, Myocardial Infarction, Dilated Cardiomyopathy, Pulmonary Hypertension
Referências
  1. Ajijola OA, 2012, J AM COLL CARDIOL, V59, P91, DOI 10.1016/j.jacc.2011.09.043
  2. Berliner D, 2018, HERZ, V43, P383, DOI 10.1007/s00059-018-4712-4
  3. Bertero E, 2018, NAT REV CARDIOL, V15, P457, DOI 10.1038/s41569-018-0044-6
  4. Booth LC, 2015, HYPERTENSION, V65, P393, DOI 10.1161/HYPERTENSIONAHA.114.04176
  5. BRISTOW MR, 1982, NEW ENGL J MED, V307, P205, DOI 10.1056/NEJM198207223070401
  6. Chen SL, 2013, J AM COLL CARDIOL, V62, P1092, DOI 10.1016/j.jacc.2013.05.075
  7. Colucci WS, 1998, CLIN CARDIOL, V21, P20, DOI 10.1002/clc.4960211305
  8. Conceicao-Souza GE, 2012, EUR J HEART FAIL, V14, P1366, DOI 10.1093/eurjhf/hfs132
  9. Silva RDCE, 2020, J THORAC CARDIOV SUR, V160, pE135, DOI 10.1016/j.jtcvs.2019.09.031
  10. Davies JE, 2013, INT J CARDIOL, V162, P189, DOI 10.1016/j.ijcard.2012.09.019
  11. Dendorfer A, 2002, HYPERTENSION, V40, P348, DOI 10.1161/01.HYP.0000028001.65341.AA
  12. Dorn GW, 2009, CARDIOVASC RES, V81, P465, DOI 10.1093/cvr/cvn243
  13. Florea VG, 2014, CIRC RES, V114, P1815, DOI 10.1161/CIRCRESAHA.114.302589
  14. FREEDMAN MD, 1991, J CLIN PHARMACOL, V31, P1061, DOI 10.1002/j.1552-4604.1991.tb03673.x
  15. Galie N, 2016, EUR HEART J, V37, P67, DOI 10.1093/eurheartj/ehv317
  16. GLOWER DD, 1985, CIRCULATION, V71, P994, DOI 10.1161/01.CIR.71.5.994
  17. Gold MR, 2016, J AM COLL CARDIOL, V68, P149, DOI 10.1016/j.jacc.2016.03.525
  18. Greene SJ, 2018, J AM COLL CARDIOL, V72, P351, DOI 10.1016/j.jacc.2018.04.070
  19. Guo WY, 2012, ACTA CARDIOL, V67, P533, DOI 10.1080/AC.67.5.2174127
  20. Hamann JJ, 2013, EUR J HEART FAIL, V15, P1319, DOI 10.1093/eurjhf/hft118
  21. Hu JL, 2014, INT J CARDIOL, V172, pE414, DOI 10.1016/j.ijcard.2013.12.254
  22. Jonnesco T., 1921, PRESSE MED, V20, P221
  23. Jordao MR, 2021, CLINICS, V76, DOI 10.6061/clinics/2021/e1958
  24. KAYE DM, 1994, J AM COLL CARDIOL, V23, P570, DOI 10.1016/0735-1097(94)90738-2
  25. Krishnan A, 2018, ANN THORAC SURG, V105, pE51, DOI 10.1016/j.athoracsur.2017.09.023
  26. Lefkowitz RJ, 2000, CIRCULATION, V101, P1634
  27. Li M, 2004, CIRCULATION, V109, P120, DOI 10.1161/01.CIR.0000105721.71640.DA
  28. Liu RX, 2017, INT J BIOCHEM CELL B, V88, P100, DOI 10.1016/j.biocel.2017.05.001
  29. Madamanchi Aasakiran, 2007, Mcgill J Med, V10, P99
  30. McMurray JJV, 2014, NEW ENGL J MED, V371, P993, DOI 10.1056/NEJMoa1409077
  31. MEREDITH IT, 1993, CIRCULATION, V88, P136, DOI 10.1161/01.CIR.88.1.136
  32. Miller WL, 2013, JACC-HEART FAIL, V1, P290, DOI 10.1016/j.jchf.2013.05.001
  33. Miller WL, 2011, JACC-CARDIOVASC IMAG, V4, P946, DOI 10.1016/j.jcmg.2011.06.017
  34. Morrell NW., 2013, J AM COLL CARDIOL, V62, pD4, DOI [DOI 10.1016/j.jacc.2013.10.025, 10.1016/j.jacc.2013.10.025]
  35. Packer M, 2015, CIRCULATION, V131, P54, DOI 10.1161/CIRCULATIONAHA.114.013748
  36. Pego-Fernandes PM, 2010, ARQ BRAS CARDIOL, V95, P685, DOI 10.1590/S0066-782X2010005000152
  37. Pick JM, 2017, CARDIOL YOUNG, V27, pS126, DOI 10.1017/S1047951116002365
  38. Ponikowski P, 2016, EUR HEART J, V37, P2129, DOI 10.1093/eurheartj/ehw128
  39. Prins KW, 2016, CARDIOL CLIN, V34, P363, DOI 10.1016/j.ccl.2016.04.001
  40. Sabbah HN, 2011, HEART FAIL REV, V16, P171, DOI 10.1007/s10741-010-9209-z
  41. Saku K, 2014, PHYSIOL REP, V2, DOI 10.14814/phy2.12136
  42. Schwartz PJ, 2014, NAT REV CARDIOL, V11, P346, DOI 10.1038/nrcardio.2014.19
  43. Tanai E, 2016, COMPR PHYSIOL, V6, P187, DOI 10.1002/cphy.c140055
  44. Tracey KJ, 2007, J CLIN INVEST, V117, P289, DOI 10.1172/JCI30555
  45. Urata H, 1998, HEART FAIL REV, V3, P119, DOI [10.1023/A:10097, DOI 10.1023/A:10097]
  46. van Empel VPM, 2005, CARDIOVASC RES, V67, P21, DOI 10.1016/j.cardiores.2005.04.012
  47. Vasconcelos Cesar F M, 2020, Rev Col Bras Cir, V47, pe20202398, DOI 10.1590/0100-6991e-20202398
  48. Vaseghi M, 2014, HEART RHYTHM, V11, P360, DOI 10.1016/j.hrthm.2013.11.028
  49. Ventura-Clapier R, 2011, BBA-MOL CELL RES, V1813, P1360, DOI 10.1016/j.bbamcr.2010.09.006
  50. Wu TJ, 1998, J AM COLL CARDIOL, V32, P187, DOI 10.1016/S0735-1097(98)00184-3
  51. Zannad F, 2015, EUR HEART J, V36, P425, DOI 10.1093/eurheartj/ehu345
  52. Zanoni FL, 2017, J THORAC CARDIOV SUR, V153, P855, DOI 10.1016/j.jtcvs.2016.11.037
  53. Zheng H, 2016, AM J PHYSIOL-HEART C, V311, pH337, DOI 10.1152/ajpheart.00999.2015
  54. Zhong L, 2012, COMPUT METHOD BIOMEC, V15, P1015, DOI 10.1080/10255842.2011.569885
  55. Zhou L, 2015, JACC-CARDIOVASC INTE, V8, P2013, DOI 10.1016/j.jcin.2015.09.015
  56. Zimmer A, 2020, MOL CELL BIOCHEM, V464, P93, DOI 10.1007/s11010-019-03652-2