Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry

Carregando...
Imagem de Miniatura
Citações na Scopus
32
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
MEDICAL MYCOLOGY, v.54, n.8, p.885-889, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOFmass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS (TM) system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS (TM) [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy.
Palavras-chave
Mould, athroconidial yeasts, fungemia, blood culture, MALDI-TOF mass spectrometry
Referências
  1. Bidart M, 2015, J CLIN MICROBIOL, V53, P1761, DOI 10.1128/JCM.03600-14
  2. Chitasombat MN, 2012, J INFECTION, V64, P68, DOI 10.1016/j.jinf.2011.11.002
  3. Clinical Laboratory Standards Institute (CLSI), 2008, M27A3 CLSI NAT COMM
  4. Clinical and Laboratory Standards Institute (CLSI), 2008, M38A2 CLSI NAT COMM
  5. Drancourt M, 2010, CLIN MICROBIOL INFEC, V16, P1620, DOI 10.1111/j.1469-0691.2010.03290.x
  6. Girmenia C, 2005, J CLIN MICROBIOL, V43, P1818, DOI 10.1128/JCM.43.4.1818-1828.2005
  7. Gorton RL, 2014, MYCOSES, V57, P592, DOI 10.1111/myc.12205
  8. Huang AM, 2013, CLIN INFECT DIS, V57, P1237, DOI 10.1093/cid/cit498
  9. Jorgensen J, MANUAL CLIN MICROBIO
  10. Miceli MH, 2011, LANCET INFECT DIS, V11, P142, DOI 10.1016/S1473-3099(10)70218-8
  11. Nalim FA, 2011, MYCOLOGIA, V103, P1302, DOI 10.3852/10-307
  12. Nucci M, 2014, CLIN MICROBIOL INFEC, V20, P580, DOI 10.1111/1469-0691.12409
  13. Nucci M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087784
  14. Nucci M, 2007, CLIN MICROBIOL REV, V20, P695, DOI 10.1128/CMR.00014-07
  15. Pappas PG, 2016, CLIN INFECT DIS, V62, pE1, DOI 10.1093/cid/civ933
  16. Pfaller MA, 2016, MED MYCOL, V54, P1, DOI 10.1093/mmy/myv076
  17. Spanu T, 2012, J CLIN MICROBIOL, V50, P176, DOI 10.1128/JCM.05742-11
  18. Sugita T, 2002, J CLIN MICROBIOL, V40, P1826, DOI 10.1128/JCM.40.5.1826-1830.2002
  19. Suzuki K, 2010, EUR J HAEMATOL, V84, P441, DOI 10.1111/j.1600-0609.2010.01410.x
  20. van Belkum A, 2015, EXPERT REV PROTEOMIC, V12, P595, DOI 10.1586/14789450.2015.1091731
  21. Vaux S, 2014, MBIO, V5, DOI 10.1128/mBio.02309-14
  22. White TJ, 1990, PCR PROTOCOLS GUIDE, V18, P315, DOI 10.1139/B07-071