Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, v.44, n.3, p.286-297, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectiveTo perform a systematic review and meta-analysis on the prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults. MethodsWe systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analysed brain regions, Braak stage, Consortium to Establish a Registry for Alzheimer's Disease score, hippocampal sclerosis and geographic location. ResultsA total of 505 articles were identified in the systematic review, and 7 were included in the meta-analysis with 1196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%) and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analysed brain regions, sample size and severity of AD neuropathology showed similar pooled TDP-43 prevalence. ConclusionsDifferent methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed.
Palavras-chave
brain ageing, dementia, elderly, post mortem, TDP-43 proteinopathy
Referências
  1. Alafuzoff I, 2008, BRAIN PATHOL, V18, P484, DOI 10.1111/j.1750-3639.2008.00147.x
  2. Alami NH, 2014, NEURON, V81, P536, DOI 10.1016/j.neuron.2013.12.018
  3. Andreasen N, 2001, ARCH NEUROL-CHICAGO, V58, P373, DOI 10.1001/archneur.58.3.373
  4. Arnold SJ, 2013, ACTA NEUROPATHOL, V126, P51, DOI 10.1007/s00401-013-1110-0
  5. BEGG CB, 1994, BIOMETRICS, V50, P1088, DOI 10.2307/2533446
  6. Bennett DA, 2006, NEUROLOGY, V66, P1837, DOI 10.1212/01.wnl.0000219668.47116.e6
  7. Braak H, 1997, NEUROBIOL AGING, V18, P351, DOI 10.1016/S0197-4580(97)00056-0
  8. Brettschneider J, 2015, ACTA NEUROPATHOL, V129, P929, DOI 10.1007/s00401-015-1428-x
  9. Brettschneider J, 2014, ACTA NEUROPATHOL, V127, P423, DOI 10.1007/s00401-013-1238-y
  10. Brettschneider J, 2013, ANN NEUROL, V74, P20, DOI 10.1002/ana.23937
  11. Buerger K, 2006, BRAIN, V129, P3035, DOI 10.1093/brain/awl269
  12. Cairns NJ, 2007, ACTA NEUROPATHOL, V114, P5, DOI 10.1007/s00401-007-0237-2
  13. Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
  14. Colombrita C, 2009, J NEUROCHEM, V111, P1051, DOI 10.1111/j.1471-4159.2009.06383.x
  15. Cykowski MD, 2016, J NEUROPATH EXP NEUR, V75, P397, DOI 10.1093/jnen/nlw014
  16. Diaper DC, 2013, HUM MOL GENET, V22, P1539, DOI 10.1093/hmg/ddt005
  17. Egger M, 1997, BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629
  18. Elobeid A, 2014, ALZHEIMERS DEMENT, V10, P522, DOI 10.1016/j.jalz.2012.12.009
  19. Fagan AM, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3007901
  20. Farfel JM, 2013, NEUROLOGY, V81, P650, DOI 10.1212/WNL.0b013e3182a08f1b
  21. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  22. Geser F, 2011, PROG NEUROBIOL, V95, P649, DOI 10.1016/j.pneurobio.2011.08.011
  23. Geser F, 2009, ARCH NEUROL-CHICAGO, V66, P180, DOI 10.1001/archneurol.2008.558
  24. Goossens J, 2015, ACTA NEUROPATHOL COM, V3, DOI 10.1186/s40478-015-0195-1
  25. Hall CB, 2009, NEUROLOGY, V73, P356, DOI 10.1212/WNL.0b013e3181b04ae3
  26. Hasegawa M, 2008, ANN NEUROL, V64, P60, DOI 10.1002/ana.21425
  27. Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186
  28. Hyman BT, 1997, J NEUROPATH EXP NEUR, V56, P1095, DOI 10.1097/00005072-199710000-00002
  29. Jack CR, 2013, NEURON, V80, P1347, DOI 10.1016/j.neuron.2013.12.003
  30. James BD, 2016, BRAIN
  31. Edition JBIRM, 2014, JOANN BRIGGS I REV M
  32. Jose PO, 2014, J AM COLL CARDIOL, V64, P2486, DOI 10.1016/j.jacc.2014.08.048
  33. Josephs KA, 2016, NEUROPATH APPL NEURO, V42, P390, DOI 10.1111/nan.12309
  34. Josephs KA, 2014, ACTA NEUROPATHOL, V127, P811, DOI 10.1007/s00401-014-1269-z
  35. Josephs KA, 2014, ACTA NEUROPATHOL, V127, P441, DOI 10.1007/s00401-013-1211-9
  36. Keage HAD, 2014, J ALZHEIMERS DIS, V42, P641, DOI 10.3233/JAD-132351
  37. Kivipelto M, 2001, BRIT MED J, V322, P1447, DOI 10.1136/bmj.322.7300.1447
  38. Klunk WE, 2004, ANN NEUROL, V55, P306, DOI 10.1002/ana.20009
  39. Knopman DS, 2003, J NEUROPATH EXP NEUR, V62, P1087, DOI 10.1093/jnen/62.11.1087
  40. Kovacs GG, 2013, ACTA NEUROPATHOL, V126, P365, DOI 10.1007/s00401-013-1157-y
  41. Laurin D, 2001, ARCH NEUROL-CHICAGO, V58, P498, DOI 10.1001/archneur.58.3.498
  42. Liberati A, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000100
  43. Liu-Yesucevitz L, 2014, J NEUROSCI, V34, P4167, DOI 10.1523/JNEUROSCI.2350-13.2014
  44. Markesbery WR, 2009, J NEUROPATH EXP NEUR, V68, P816, DOI 10.1097/NEN.0b013e3181ac10a7
  45. Mayeda ER, 2014, DIABETES CARE, V37, P1009, DOI 10.2337/dc13-0215
  46. MIRRA SS, 1991, NEUROLOGY, V41, P479, DOI 10.1212/WNL.41.4.479
  47. Mizuno Y, 2012, J NEUROL SCI, V315, P20, DOI 10.1016/j.jns.2011.12.012
  48. Moher D, 2011, EPIDEMIOLOGY, V22, P128, DOI 10.1097/EDE.0b013e3181fe7825
  49. MORRIS JC, 1993, NEUROLOGY, V43, P2412, DOI 10.1212/WNL.43.11.2412-a
  50. Morris MC, 2012, P NUTR SOC, V71, P1, DOI 10.1017/S0029665111003296
  51. Nag S, 2015, ANN NEUROL, V77, P942, DOI 10.1002/ana.24388
  52. Nascimento C, 2016, BRAIN PATHOL, V26, P177, DOI 10.1111/bpa.12296
  53. Nelson PT, 2016, J NEUROPATH EXP NEUR, V75, P482, DOI 10.1093/jnen/nlw033
  54. Neumann M, 2006, SCIENCE, V314, P130, DOI 10.1126/science.1134108
  55. Nyaga VN, 2014, ARCH PUBLIC HEALTH, V72, DOI 10.1186/2049-3258-72-39
  56. Paganini-Hill A, 2016, ALZ DIS ASSOC DIS, V30, P21, DOI 10.1097/WAD.0000000000000087
  57. Price JL, 2009, NEUROBIOL AGING, V30, P1026, DOI 10.1016/j.neurobiolaging.2009.04.002
  58. Scotter EL, 2015, NEUROTHERAPEUTICS, V12, P352, DOI 10.1007/s13311-015-0338-x
  59. Shamseer L, 2015, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7647
  60. Steel Z, 2014, INT J EPIDEMIOL, V43, P476, DOI 10.1093/ije/dyu038
  61. Sterne JAC, 2008, SYSTEMATIC REV HLTH, P347, DOI 10.1002/9780470693926.CH18
  62. Stroup DF, 2000, JAMA-J AM MED ASSOC, V283, P2008, DOI 10.1001/jama.283.15.2008
  63. Tan RH, 2015, BRAIN, V138, P3110, DOI 10.1093/brain/awv220
  64. Tan RH, 2013, ACTA NEUROPATHOL COM, V1, DOI 10.1186/2051-5960-1-33
  65. Uchino A, 2015, ACTA NEUROPATHOL COM, V3, DOI 10.1186/s40478-015-0215-1
  66. Wilson RS, 2013, JAMA NEUROL, V70, P1418, DOI 10.1001/jamaneurol.2013.3961
  67. Yu L, 2015, NEUROLOGY, V84, P927, DOI 10.1212/WNL.0000000000001313
  68. Zhao BN, 2015, AM J HYPERTENS, V28, P631, DOI 10.1093/ajh/hpu189