Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity

Carregando...
Imagem de Miniatura
Citações na Scopus
34
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, v.8, article ID 520, 19p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37 degrees C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-beta 1 and SM22 alpha used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 +/- 895 Pa) was significantly higher than those derived from the left ventricle (3,384 +/- 698 Pa) and the mitral valve (3,233 +/- 323 Pa) (One-way ANOVA,p= 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-beta 1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-beta 1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Palavras-chave
hydrogels, extracellular matrix proteins, tissue engineering, regenerative medicine, biocompatible materials, biomimetic materials, tissue scaffolds, tissue decellularization
Referências
  1. Agrawal V, 2011, TISSUE ENG PT A, V17, P2435, DOI [10.1089/ten.tea.2011.0036, 10.1089/ten.TEA.2011.0036]
  2. Albig Allan R, 2005, Future Oncol, V1, P23, DOI 10.1517/14796694.1.1.23
  3. Atsawasuwan P, 2008, J BIOL CHEM, V283, P34229, DOI 10.1074/jbc.M803142200
  4. Bauer A, 2017, ACTA BIOMATER, V62, P82, DOI 10.1016/j.actbio.2017.08.041
  5. Bausch AR, 1999, BIOPHYS J, V76, P573, DOI 10.1016/S0006-3495(99)77225-5
  6. Beqaj S, 2002, J CELL BIOL, V156, P893, DOI 10.1083/jcb.200107049
  7. Brown BN, 2014, TRANSL RES, V163, P268, DOI 10.1016/j.trsl.2013.11.003
  8. Califano JP, 2009, IEEE ENG MED BIO, P3343, DOI 10.1109/IEMBS.2009.5333194
  9. Califano JP, 2008, CELL MOL BIOENG, V1, P122, DOI 10.1007/s12195-008-0022-x
  10. Cameron AR, 2014, BIOMATERIALS, V35, P1857, DOI 10.1016/j.biomaterials.2013.11.023
  11. Cameron AR, 2011, BIOMATERIALS, V32, P5979, DOI 10.1016/j.biomaterials.2011.04.003
  12. Carthy JM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133056
  13. Cense AW, 2006, J MICROBIOL METH, V67, P463, DOI 10.1016/j.mimet.2006.04.023
  14. Charrier EE, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-02906-9
  15. Chaudhuri O, 2016, NAT MATER, V15, P326, DOI [10.1038/nmat4489, 10.1038/NMAT4489]
  16. Chaudhuri O, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7365
  17. Chen Q, 2007, J BIOL CHEM, V282, P26418, DOI 10.1074/jbc.M703341200
  18. Choocheep K, 2010, J BIOL CHEM, V285, P21114, DOI 10.1074/jbc.M109.096479
  19. Cigliano A, 2012, BIOCHEM RES INT, V2012, DOI 10.1155/2012/979351
  20. Conklin BS, 2002, MED ENG PHYS, V24, P173, DOI 10.1016/S1350-4533(02)00010-3
  21. Crapo PM, 2011, BIOMATERIALS, V32, P3233, DOI 10.1016/j.biomaterials.2011.01.057
  22. Cross VL, 2010, BIOMATERIALS, V31, P8596, DOI 10.1016/j.biomaterials.2010.07.072
  23. Dahl SLM, 2003, CELL TRANSPLANT, V12, P659, DOI 10.3727/000000003108747136
  24. Danielpour D, 1989, GROWTH FACTORS, V2, P61, DOI 10.3109/08977198909069082
  25. DeQuach JA, 2012, EUR CELLS MATER, V23, P400, DOI 10.22203/eCM.v023a31
  26. Du WJ, 2016, STEM CELL RES THER, V7, DOI 10.1186/s13287-016-0418-9
  27. Duan Y, 2011, J CARDIOVASC TRANSL, V4, P605, DOI 10.1007/s12265-011-9304-0
  28. Dziki JL, 2017, TISSUE ENG PT A, V23, P1152, DOI [10.1089/ten.tea.2016.0538, 10.1089/ten.TEA.2016.0538]
  29. Efraim Y, 2017, ACTA BIOMATER, V50, P220, DOI 10.1016/j.actbio.2016.12.015
  30. Engler AJ, 2006, CELL, V126, P677, DOI 10.1016/j.cell.2006.06.044
  31. Esko J. D., 2017, ESSENTIALS GLYCOBIOL
  32. Even-Ram S, 2006, CELL, V126, P645, DOI 10.1016/j.cell.2006.08.008
  33. FARNDALE RW, 1982, CONNECT TISSUE RES, V9, P247, DOI 10.3109/03008208209160269
  34. Fercana GR, 2017, BIOMATERIALS, V123, P142, DOI 10.1016/j.biomaterials.2017.01.037
  35. Fu YH, 2016, J CELL MOL MED, V20, P740, DOI 10.1111/jcmm.12776
  36. Gacheru SN, 1997, J CELL BIOCHEM, V65, P395, DOI 10.1002/(SICI)1097-4644(19970601)65:3<395::AID-JCB9>3.0.CO;2-N
  37. Grover GN, 2014, NANOTECHNOLOGY, V25, DOI 10.1088/0957-4484/25/1/014011
  38. Hajmousa G, 2018, DIABETOLOGIA, V61, P2371, DOI 10.1007/s00125-018-4713-0
  39. Hashimoto J, 2006, STEM CELLS, V24, P2346, DOI 10.1634/stemcells.2005-0605
  40. HILDEBRAND A, 1994, BIOCHEM J, V302, P527, DOI 10.1042/bj3020527
  41. Hirai M, 2007, EMBO J, V26, P3283, DOI 10.1038/sj.emboj.7601768
  42. Hoshiba T, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/6397820
  43. Hoshiba T, 2010, EXPERT OPIN BIOL TH, V10, P1717, DOI 10.1517/14712598.2010.534079
  44. Hrebikova H, 2015, BIOMED PAP, V159, P12, DOI 10.5507/bp.2013.076
  45. Jang J, 2017, BIOMATERIALS, V112, P264, DOI 10.1016/j.biomaterials.2016.10.026
  46. Johnson Todd D, 2014, Methods Mol Biol, V1181, P109, DOI 10.1007/978-1-4939-1047-2_10
  47. Johnson TD, 2011, NANOTECHNOLOGY, V22, DOI 10.1088/0957-4484/22/49/494015
  48. Kappler B, 2016, J MATER SCI-MATER M, V27, DOI 10.1007/s10856-016-5730-5
  49. Kawecki M, 2018, J BIOMED MATER RES B, V106, P909, DOI 10.1002/jbm.b.33865
  50. Keane TJ, 2015, METHODS, V84, P25, DOI 10.1016/j.ymeth.2015.03.005
  51. Klees RF, 2005, MOL BIOL CELL, V16, P881
  52. Klees RF, 2008, EXP CELL RES, V314, P763, DOI 10.1016/j.yexcr.2007.12.007
  53. Krump-Konvalinkova V, 2001, LAB INVEST, V81, P1717, DOI 10.1038/labinvest.3780385
  54. Leonel LCPC, 2018, BRAZ J MED BIOL RES, V51, DOI [10.1590/1414-431x20176382, 10.1590/1414-431X20176382]
  55. Liguori GR, 2017, TISSUE ENG PART C-ME, V23, P850, DOI [10.1089/ten.tec.2017.0189, 10.1089/ten.TEC.2017.0189]
  56. Liguori GR, 2019, STEM CELLS INT, V2019, DOI 10.1155/2019/5387850
  57. Lin HY, 2010, J BIOMED SCI, V17, DOI 10.1186/1423-0127-17-56
  58. Mao AS, 2016, BIOMATERIALS, V98, P184, DOI 10.1016/j.biomaterials.2016.05.004
  59. McCloy RA, 2014, CELL CYCLE, V13, P1400, DOI 10.4161/cc.28401
  60. McKinnon DD, 2014, ADV MATER, V26, P865, DOI 10.1002/adma.201303680
  61. Mercuri JJ, 2013, TISSUE ENG PT A, V19, P952, DOI [10.1089/ten.tea.2012.0088, 10.1089/ten.TEA.2012.0088]
  62. Mittag F, 2012, ORTHOP REV, V4, P160, DOI 10.4081/or.2012.e36
  63. Mruthyunjaya S, 2010, BIOCHEM BIOPH RES CO, V391, P43, DOI 10.1016/j.bbrc.2009.10.158
  64. Muiznieks LD, 2013, BBA-MOL BASIS DIS, V1832, P866, DOI 10.1016/j.bbadis.2012.11.022
  65. Nakamura R, 2014, ANIM SCI J, V85, P262, DOI 10.1111/asj.12116
  66. Naugle JE, 2006, AM J PHYSIOL-HEART C, V290, pH323, DOI 10.1152/ajpheart.00321.2005
  67. Nibourg LM, 2015, EXP EYE RES, V134, P148, DOI 10.1016/j.exer.2015.02.015
  68. O'Neill JD, 2013, BIOMATERIALS, V34, P9830, DOI 10.1016/j.biomaterials.2013.09.022
  69. Oida T, 2010, J IMMUNOL METHODS, V362, P195, DOI 10.1016/j.jim.2010.09.008
  70. Park JS, 2011, BIOMATERIALS, V32, P3921, DOI 10.1016/j.biomaterials.2011.02.019
  71. Petersen TH, 2012, CELLS TISSUES ORGANS, V195, P222, DOI 10.1159/000324896
  72. Peterson BW, 2013, MBIO, V4, DOI 10.1128/mBio.00497-13
  73. Pok S, 2014, TISSUE ENG PT A, V20, P1877, DOI [10.1089/ten.TEA.2013.0620, 10.1089/ten.tea.2013.0620]
  74. Poornejad N, 2016, J BIOMATER APPL, V31, P521, DOI 10.1177/0885328216656099
  75. Rehman J, 2004, CIRCULATION, V109, P1292, DOI 10.1161/01.CIR.0000121425.42966.F1
  76. Reinboth B, 2002, J BIOL CHEM, V277, P3950, DOI 10.1074/jbc.M109540200
  77. Reing JE, 2009, TISSUE ENG PT A, V15, P605, DOI 10.1089/ten.tea.2007.0425
  78. Robertson IB, 2015, MATRIX BIOL, V47, P44, DOI 10.1016/j.matbio.2015.05.005
  79. Ruhl M, 1999, EXP CELL RES, V250, P548, DOI 10.1006/excr.1999.4540
  80. Russo V, 2015, BIORESEARCH OPEN ACC, V4, P374, DOI 10.1089/biores.2015.0030
  81. Saldin LT, 2017, ACTA BIOMATER, V49, P1, DOI 10.1016/j.actbio.2016.11.068
  82. Schaap-Oziemlak AM, 2014, RSC ADV, V4, P53307, DOI 10.1039/c4ra07915a
  83. Schenke-Layland K, 2003, J STRUCT BIOL, V143, P201, DOI 10.1016/j.jsb.2003.08.002
  84. Seif-Naraghi S., 2010, JOVE-J VIS EXP, V46, pe2109, DOI 10.3791/2109
  85. Seif-Naraghi SB, 2012, ACTA BIOMATER, V8, P3695, DOI 10.1016/j.actbio.2012.06.030
  86. Seki S, 2005, NAT GENET, V37, P607, DOI 10.1038/ng1557
  87. Sengle G, 2011, J BIOL CHEM, V286, P5087, DOI 10.1074/jbc.M110.188615
  88. Seo Y, 2018, ACTA BIOMATER, V67, P270, DOI 10.1016/j.actbio.2017.11.046
  89. Shanley CJ, 1997, J VASC SURG, V25, P446, DOI 10.1016/S0741-5214(97)70254-4
  90. Sharma PK, 2011, EXP EYE RES, V93, P681, DOI 10.1016/j.exer.2011.08.009
  91. Singelyn JM, 2012, J AM COLL CARDIOL, V59, P751, DOI 10.1016/j.jacc.2011.10.888
  92. Singelyn JM, 2009, BIOMATERIALS, V30, P5409, DOI 10.1016/j.biomaterials.2009.06.045
  93. Smeriglio P, 2017, BIOENG TRANSL MED, V2, P278, DOI 10.1002/btm2.10078
  94. Stamati K, 2014, EXP CELL RES, V327, P68, DOI 10.1016/j.yexcr.2014.05.012
  95. Stoppel WL, 2016, J BIOMED MATER RES A, V104, P3058, DOI 10.1002/jbm.a.35850
  96. Terlizzi V, 2018, STEM CELLS, V36, P240, DOI 10.1002/stem.2726
  97. Timpl R, 2003, NAT REV MOL CELL BIO, V4, P479, DOI 10.1038/nrm1130
  98. Tuin A, 2010, TISSUE ENG PT A, V16, P1811, DOI [10.1089/ten.tea.2009.0592, 10.1089/ten.TEA.2009.0592]
  99. Twomey JD, 2014, EUR CELLS MATER, V27, P237, DOI 10.22203/eCM.v027a17
  100. Ungerleider JL, 2015, METHODS, V84, P53, DOI 10.1016/j.ymeth.2015.03.024
  101. Ungerleider Jessica L, 2016, JACC Basic Transl Sci, V1, P32
  102. van Nieuwenhoven FA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16201-y
  103. Varki A., 1999, ESSENTIALS GLYCOBIOL
  104. Volk SW, 2011, CELLS TISSUES ORGANS, V194, P25, DOI 10.1159/000322399
  105. Wang RM, 2017, BIOMATERIALS, V129, P98, DOI 10.1016/j.biomaterials.2017.03.016
  106. Wassenaar JW, 2016, J MATER CHEM B, V4, P2794, DOI 10.1039/c5tb02564h
  107. Wassenaar JW, 2016, J AM COLL CARDIOL, V67, P1074, DOI 10.1016/j.jacc.2015.12.035
  108. Wells RG, 2008, HEPATOLOGY, V47, P1394, DOI 10.1002/hep.22193
  109. Wolf MT, 2012, BIOMATERIALS, V33, P7028, DOI 10.1016/j.biomaterials.2012.06.051
  110. Wu JL, 2015, ACTA BIOMATER, V16, P49, DOI 10.1016/j.actbio.2015.01.027
  111. Ye K, 2016, ACS APPL MATER INTER, V8, P21903, DOI 10.1021/acsami.5b09746
  112. Young DA, 2011, ACTA BIOMATER, V7, P1040, DOI 10.1016/j.actbio.2010.09.035
  113. Zacchigna L, 2006, CELL, V124, P929, DOI 10.1016/j.cell.2005.12.035
  114. Zanetti M, 2004, MOL CELL BIOL, V24, P638, DOI 10.1128/MCB.24.2.638-650.2004
  115. Zhang CL, 2018, J MOL CELL CARDIOL, V116, P135, DOI 10.1016/j.yjmcc.2018.02.006