Myocardial Fibrosis in Classical Low-Flow, Low-Gradient Aortic Stenosis Insights From a Cardiovascular Magnetic Resonance Study

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
CIRCULATION-CARDIOVASCULAR IMAGING, v.12, n.5, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Few data exist on the degree of interstitial myocardial fibrosis in patients with classical low-flow, low-gradient aortic stenosis (LFLG-AS) and its association with left ventricular flow reserve (FR) on dobutamine stress echocardiography. This study sought to evaluate the diffuse interstitial fibrosis measured by T1 mapping cardiac magnetic resonance technique in LFLG-AS patients with and without FR. Methods: Prospective study including 65 consecutive patients (41 LFLG-AS [mean age, 67.1 +/- 8.4 years; 83% men] and 24 high-gradient aortic stenosis used as controls) undergoing dobutamine stress echocardiography to assess FR and cardiac magnetic resonance to determine the extracellular volume (ECV) fraction of the myocardium, indexed ECV (iECV) to body surface area and late gadolinium enhancement. Results: Interstitial myocardial fibrosis measured by iECV was higher in patients with LFLG-AS with and without FR as compared with high-gradient aortic stenosis (35.25 +/- 9.75 versus 32.93 +/- 11.00 versus 21.19 +/- 6.47 mL/m(2), respectively; P<0.001). However, both ECV and iECV levels were similar between LFLG-AS patients with and without FR (P=0.950 and P=0.701, respectively). Also, FR did not correlate significantly with ECV (r=-0.16, P=0.31) or iECV (r=0.11, P=0.51). Late gadolinium enhancement mass was also similar in patients with versus without FR but lower in high-gradient aortic stenosis (13.3 +/- 10.2 versus 10.5 +/- 7.5 versus 4.8 +/- 5.9 g, respectively; P=0.018). Conclusions: Patients with LFLG-AS have higher ECV, iECV, and late gadolinium enhancement mass compared with high-gradient aortic stenosis. Moreover, among patients with LFLG-AS, the degree of myocardial fibrosis was similar in patients with versus those without FR. These findings suggest that diffuse myocardial fibrosis may not be the main factor responsible for the absence of FR in LFLG-AS patients.
Palavras-chave
aortic valve stenosis, fibrosis, heart, humans, magnetic resonance imaging
Referências
  1. Azevedo CF, 2010, J AM COLL CARDIOL, V56, P278, DOI 10.1016/j.jacc.2009.12.074
  2. Barone-Rochette G, 2013, CIRC-CARDIOVASC IMAG, V6, P1009, DOI 10.1161/CIRCIMAGING.113.000515
  3. Baumgartner H, 2017, J AM SOC ECHOCARDIOG, V30, P372, DOI 10.1016/j.echo.2017.02.009
  4. Bull S, 2013, HEART, V99, P932, DOI 10.1136/heartjnl-2012-303052
  5. Chin CWL, 2017, JACC-CARDIOVASC IMAG, V10, P1320, DOI 10.1016/j.jcmg.2016.10.007
  6. Chin CWL, 2014, EUR HEART J-CARD IMG, V15, P556, DOI 10.1093/ehjci/jet245
  7. Clavel MA, 2008, CIRCULATION, V118, pS234, DOI 10.1161/CIRCULATIONAHA.107.757427
  8. Clavel MA, 2017, JACC-CARDIOVASC IMAG, V10, P185, DOI 10.1016/j.jcmg.2017.01.002
  9. Clavel MA, 2014, J AM COLL CARDIOL, V64, P1202, DOI 10.1016/j.jacc.2014.05.066
  10. Clavel MA, 2013, J AM COLL CARDIOL, V62, P2329, DOI 10.1016/j.jacc.2013.08.1621
  11. Cueff C, 2011, HEART, V97, P721, DOI 10.1136/hrt.2010.198853
  12. De Boeck BW, 2008, CARDIOVASC ULTRASOUN, V6, DOI 10.1186/1476-7120-6-22
  13. de Ravenstein CD, 2015, J CARDIOVASC MAGN R, V17, DOI 10.1186/s12968-015-0150-0
  14. DEFILIPPI CR, 1995, AM J CARDIOL, V75, P191, DOI 10.1016/S0002-9149(00)80078-8
  15. Everett RJ, 2018, CIRC-CARDIOVASC IMAG, V11, DOI 10.1161/CIRCIMAGING.117.007451
  16. Farooq V, 2013, CIRCULATION, V128, P141, DOI 10.1161/CIRCULATIONAHA.113.001803
  17. Herrmann S, 2011, J AM COLL CARDIOL, V58, P402, DOI 10.1016/j.jacc.2011.02.059
  18. Kellman P, 2014, J CARDIOVASC MAGN R, V16, DOI 10.1186/1532-429X-16-2
  19. Lancellotti P, 2017, J AM SOC ECHOCARDIOG, V30, DOI 10.1016/j.echo.2016.10.016
  20. LANG RM, 2015, J AM SOC ECHOCARDIOG, V28, DOI 10.1016/J.ECHO.2014.10.003
  21. Martinez-Naharro A, 2019, JACC-CARDIOVASC IMAG, V12, P810, DOI 10.1016/j.jcmg.2018.02.006
  22. Messroghli DR, 2017, J CARDIOVASC MAGN R, V19, DOI 10.1186/s12968-017-0389-8
  23. Mewton N, 2011, J AM COLL CARDIOL, V57, P891, DOI 10.1016/j.jacc.2010.11.013
  24. Monin JL, 2003, CIRCULATION, V108, P319, DOI 10.1161/01.CIR.0000079171.43055.46
  25. Nadjiri J, 2016, INT J CARDIOVAS IMAG, V32, P1625, DOI 10.1007/s10554-016-0948-3
  26. Nishimura RA, 2002, CIRCULATION, V106, P809, DOI 10.1161/01.CIR.0000025611.21140.34
  27. Quere JP, 2006, CIRCULATION, V113, P1738, DOI 10.1161/CIRCULATIONAHA.105.568824
  28. Ribeiro HB, 2018, J AM COLL CARDIOL, V71, P1297, DOI 10.1016/j.jacc.2018.01.054
  29. Siepen FAD, 2015, EUR HEART J-CARD IMG, V16, P210, DOI 10.1093/ehjci/jeu183
  30. Treibel TA, 2018, J AM COLL CARDIOL, V71, P860, DOI [10.1016/j.jacc.2017.12.035, 10.1016/j.jacc.2017.11.037]
  31. Treibel TA, 2016, JACC-CARDIOVASC IMAG, V9, P54, DOI 10.1016/j.jcmg.2015.11.008
  32. Tribouilloy C, 2009, J AM COLL CARDIOL, V53, P1865, DOI 10.1016/j.jacc.2009.02.026
  33. Weidemann F, 2009, CIRCULATION, V120, P577, DOI 10.1161/CIRCULATIONAHA.108.847772