Myocardial function reclassification: Echocardiographic strain patterns in patients with chronic Chagas cardiomyopathy and intraventricular dyssynchrony

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
INTERNATIONAL JOURNAL OF CARDIOLOGY, v.348, p.102-107, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: We aimed to identify, among Chronic Chagas Cardiomyopathy (CCC) patients with left ventricular dysfunction (LVD) and non-left bundle branch block (non-LBBB), subgroups with different functional and mechanical patterns of global longitudinal strain (GLS) and intraventricular dyssynchrony (IVD) at rest and after exercise stress test, and reclassify them using a new echocardiographic approach. Methodology: In this single-center cross-sectional study, 40 patients with CCC, left ventricular ejection fraction (LVEF) <= 35% and non-LBBB underwent rest echocardiography and then treadmill exercise stress echocardiography with GLS and IVD analysis. The sample was divided into four groups, based on GLS and IVD significant variation between rest and exercise: GLS + IVD+ (9 patients); GLS + IVD- (9 patients); GLS-IVD+ (10 patients); GLS-IVD- (10 patients). Results: At rest, median LVEF was 28% (21.3%-33%) and GLS (-7% (-5%/-9.3%), were not different among groups. The average response of GLS was an increase of 0.74% over rest values, and the average response of IVD was a decrease of 6.9 ms. Group GLS-IVD+ presented more dyssynchrony at rest (p = 0.01). Left atrial (LA) volume (higher in GLS-IVD-) (p = 0.022) and TAPSE (higher in GLS + IVD+) (p = 0.015) were also different among groups at baseline. Of the 40 patients evaluated, 27 (67.5%) had very severe LVD (GLS < -8%). In addition, among these patients, 11 patients had contractile reserve after undergoing stress echocardiography. Conclusions: In patients with CCC, severe LVD and non-LBBB, the evaluation of GLS and IVD between rest and exercise was able to reclassify myocardial function and to identify subgroups with contractile reserve and significant dyssynchronopathy.
Palavras-chave
Chagas cardiomyopathy, Ventricular dysfunction, Intraventricular dyssynchrony, Stress echocardiography
Referências
  1. Bader H, 2004, J AM COLL CARDIOL, V43, P248, DOI 10.1016/j.jacc.2003.08.038
  2. Barros MVL, 2016, J AM SOC ECHOCARDIOG, V29, P368, DOI 10.1016/j.echo.2015.12.008
  3. BELESLIN BD, 1994, CIRCULATION, V90, P1168, DOI 10.1161/01.CIR.90.3.1168
  4. Blessberger H, 2010, HEART, V96, P716, DOI 10.1136/hrt.2007.141002
  5. Bocchi EA, 2017, J AM COLL CARDIOL, V70, P1510, DOI 10.1016/j.jacc.2017.08.004
  6. Ciampi Q, 2017, BMC CARDIOVASC DISOR, V17, DOI 10.1186/s12872-017-0657-4
  7. Curtis JP, 2003, J AM COLL CARDIOL, V42, P736, DOI 10.1016/S0735-1097(03)00789-7
  8. D'Andrea A, 2007, EUR HEART J, V28, P1004, DOI 10.1093/eurheartj/ehm021
  9. D'Andrea A, 2013, EUR HEART J-CARD IMG, V14, P183, DOI 10.1093/ehjci/jes154
  10. Garcia-Alvarez A, 2011, J CARD FAIL, V17, P1028, DOI 10.1016/j.cardfail.2011.08.007
  11. Gervais R, 2009, EUR J HEART FAIL, V11, P699, DOI 10.1093/eurjhf/hfp074
  12. Gomes VAM, 2016, J AM SOC ECHOCARDIOG, V29, P679, DOI 10.1016/j.echo.2016.03.007
  13. Hoit BD, 2014, J AM COLL CARDIOL, V63, P493, DOI 10.1016/j.jacc.2013.10.055
  14. Lafitte S, 2006, J AM COLL CARDIOL, V47, P2253, DOI 10.1016/j.jacc.2005.11.087
  15. Lancellotti P, 2016, EUR HEART J-CARD IMG, V17, P1191, DOI 10.1093/ehjci/jew190
  16. Marcolino MS, 2015, GLOB HEART, V10, P167, DOI 10.1016/j.gheart.2015.07.001
  17. Martinelli M, 2018, EUROPACE, V20, P1813, DOI 10.1093/europace/eux375
  18. Matsumoto K, 2013, CIRC J, V77, P1750, DOI 10.1253/circj.CJ-12-1487
  19. Mitchell C, 2019, J AM SOC ECHOCARDIOG, V32, P1, DOI 10.1016/j.echo.2018.06.004
  20. Nahum J, 2010, CIRC-CARDIOVASC IMAG, V3, P249, DOI 10.1161/CIRCIMAGING.109.910893
  21. Nunes MCP, 2018, EUR HEART J-CARD IMG, V19, P459, DOI 10.1093/ehjci/jex154
  22. Nunes MCP, 2009, J AM SOC ECHOCARDIOG, V22, P82, DOI 10.1016/j.echo.2008.11.015
  23. Nunes MDP, 2008, INT J CARDIOL, V127, P372, DOI 10.1016/j.ijcard.2007.06.012
  24. Lima MMO, 2010, ECHOCARDIOGR-J CARD, V27, P519, DOI 10.1111/j.1540-8175.2009.01081.x
  25. Pellikka PA, 2020, J AM SOC ECHOCARDIOG, V33, P1, DOI 10.1016/j.echo.2019.07.001
  26. Ponikowski P, 2016, EUR HEART J, V37, P2129, DOI 10.1093/eurheartj/ehw128
  27. Potter E, 2018, JACC-CARDIOVASC IMAG, V11, P260, DOI 10.1016/j.jcmg.2017.11.017
  28. Ramahi TM, 2001, EUR HEART J, V22, P849, DOI 10.1053/euhj.2001.2654
  29. Rassi A, 2010, LANCET, V375, P1388, DOI 10.1016/S0140-6736(10)60061-X
  30. Ribeiro ALP, 2014, J AM HEART ASSOC, V3, DOI 10.1161/JAHA.113.000632
  31. Ruschitzka F, 2013, NEW ENGL J MED, V369, P1395, DOI 10.1056/NEJMoa1306687
  32. Sengelov M, 2015, JACC-CARDIOVASC IMAG, V8, P1351, DOI 10.1016/j.jcmg.2015.07.013
  33. Meneghelo RS, 2010, Arq. Bras. Cardiol., V95, P1, DOI 10.1590/S0066-782X2010000800001
  34. Yu CM, 2005, J AM COLL CARDIOL, V45, P677, DOI 10.1016/j.jacc.2004.12.003