SARS-CoV-2 antibody dynamics in blood donors and COVID-19 epidemiology in eight Brazilian state capitals: A serial cross-sectional study

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
eLIFE SCIENCES PUBL LTD
Autores
PRETE JR., Carlos A.
BUSS, Lewis F.
WHITTAKER, Charles
SALOMON, Tassila
OIKAWA, Marcio K.
PEREIRA, Rafael H. M.
MOURA, Isabel C. G.
DELERINO, Lucas
BARRAL-NETTO, Manoel
TAVARES, Natalia M.
Citação
ELIFE, v.11, article ID e78233, 53p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The COVID-19 situation in Brazil is complex due to large differences in the shape and size of regional epidemics. Understanding these patterns is crucial to understand future outbreaks of SARS-CoV-2 or other respiratory pathogens in the country. Methods: We tested 97,950 blood donation samples for IgG antibodies from March 2020 to March 2021 in 8 of Brazil's most populous cities. Residential postal codes were used to obtain representative samples. Weekly age- and sex-specific seroprevalence were estimated by correcting the crude seroprevalence by test sensitivity, specificity, and antibody waning. Results: The inferred attack rate of SARS-CoV-2 in December 2020, before the Gamma variant of concern (VOC) was dominant, ranged from 19.3% (95% credible interval [CrI] 17.5-21.2%) in Curitiba to 75.0% (95% CrI 70.8-80.3%) in Manaus. Seroprevalence was consistently smaller in women and donors older than 55 years. The age-specific infection fatality rate (IFR) differed between cities and consistently increased with age. The infection hospitalisation rate increased significantly during the Gamma-dominated second wave in Manaus, suggesting increased morbidity of the Gamma VOC compared to previous variants circulating in Manaus. The higher disease penetrance associated with the health system's collapse increased the overall IFR by a minimum factor of 2.91 (95% CrI 2.43-3.53). Conclusions: These results highlight the utility of blood donor serosurveillance to track epidemic maturity and demonstrate demographic and spatial heterogeneity in SARS-CoV-2 spread.
Palavras-chave
SARS-CoV-2, COVID-19, blood donors, serosurveillance, attack rate, infection fatality rate
Referências
  1. Banho CA., 2021, MEDRXIV, DOI [10.1101/2021.07.28.21261228, DOI 10.1101/2021.07.28.21261228]
  2. Barreto Ivana Cristina de Holanda Cunha, 2021, Saúde debate, V45, P1126, DOI 10.1590/0103-1104202113114i
  3. Brazeau N., 2020, COVID 19 INFECTION F
  4. Buss LF, 2021, LANCET GLOB HEALTH, V9, pE1475, DOI 10.1016/S2214-109X(21)00396-X
  5. Buss LF, 2021, SCIENCE, V371, P288, DOI 10.1126/science.abe9728
  6. Castro MC, 2021, SCIENCE, V372, P821, DOI 10.1126/science.abh1558
  7. Coutinho Renato Mendes, 2021, Commun Med (Lond), V1, P48, DOI 10.1038/s43856-021-00048-6
  8. Crotty S, 2021, SCIENCE, V372, P1392, DOI 10.1126/science.abj2258
  9. de Souza FSH, 2021, EUR J EPIDEMIOL, V36, P441, DOI 10.1007/s10654-021-00750-8
  10. Santos AAD, 2021, SCI DATA, V8, DOI 10.1038/s41597-021-00859-1
  11. de Souza WM, 2020, NAT HUM BEHAV, V4, P856, DOI 10.1038/s41562-020-0928-4
  12. Di Germanio C, 2021, TRANSFUSION, V61, P2677, DOI 10.1111/trf.16555
  13. Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1126/science.abh2644, 10.1101/2021.02.26.21252554, 10.1126/science.abh2644Article]
  14. Hallal PC, 2020, LANCET GLOB HEALTH, V8, pE1390, DOI 10.1016/S2214-109X(20)30387-9
  15. Lalwani P, 2021, LANCET GLOB HEALTH, V9, pE1508, DOI 10.1016/S2214-109X(21)00355-7
  16. Li SL, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-004959
  17. Lucas C, 2021, NATURE, V600, P523, DOI 10.1038/s41586-021-04085-y
  18. Lumley SF, 2021, CLIN INFECT DIS, V73, pE699, DOI 10.1093/cid/ciab004
  19. Martins AF, 2021, EUROSURVEILLANCE, V26, P8, DOI 10.2807/1560-7917.ES.2021.26.12.2100276
  20. Mina MJ, 2020, ELIFE, V9, DOI 10.7554/eLife.58989
  21. Monod M, 2021, SCIENCE, V371, P1336, DOI 10.1126/science.abe8372
  22. O'Driscoll M, 2020, NATURE, DOI 10.1038/s41586-020-2918-0
  23. Oliveira M. H. S. d., 2021, medRxiv, DOI [10.1101/2021.03.24.21254046, DOI 10.1101/2021.03.24.21254046]
  24. Orner EP, 2021, DIAGN MICR INFEC DIS, V99, DOI 10.1016/j.diagmicrobio.2020.115300
  25. Prete CA, 2022, BMC INFECT DIS, V22, DOI 10.1186/s12879-022-07094-y
  26. Reynolds CJ, 2021, SCIENCE, V372, P1418, DOI 10.1126/science.abh1282
  27. Shioda K, 2021, EPIDEMIOLOGY, V32, P518, DOI 10.1097/EDE.0000000000001361
  28. Stamatatos L, 2021, SCIENCE, V372, P1413, DOI 10.1126/science.abg9175
  29. Takahashi S, 2021, medRxiv, DOI [10.1101/2021.09.09.21263139, DOI 10.1101/2021.09.09.21263139]
  30. Takahashi S, 2020, J INFECT DIS, V222, P1772, DOI 10.1093/infdis/jiaa523