COL1A1, COL4A3, TIMP2 and TGFB1 polymorphisms in cervical insufficiency

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
WALTER DE GRUYTER GMBH
Citação
JOURNAL OF PERINATAL MEDICINE, v.49, n.5, p.553-558, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: To investigate the association between selected single nucleotide polymorphisms (SNPs) with cervical insufficiency and its relationship with obstetric history. Methods: Twenty-eight women with cervical insufficiency (case group) and 29 non-pregnant women (control group) were included. The SNPs sequenced included rs2586490 in collagen type I alpha 1 chain (COL1A1), rs1882435 in collagen type IV alpha 3 chain (COL4A3), rs2277698 in metallopeptidase inhibitor 2 (TIMP2), and rs1800468 in transforming growth factor beta 1 (TGFB1). Results: We found a higher frequency of the normal allele in the control group (65.5%) and the homozygous mutated genotype in the case group (64.3%) for rs2586490 in COL1A1 (p=0.023). An unplanned finding in the cervical insufficiency group was a higher gestational age of delivery (median >= 38 weeks) in the mutated allele than in the wildtype genotype (median of 28.2 weeks) for rs2857396, which is also in the COL1A1 gene (p=0.011). Conclusions: The findings of the present study corroborate the hypothesis that cervical insufficiency has a genetic component and probably involves genes encoding proteins in the extracellular matrix, in addition to inflammatory processes.
Palavras-chave
cervical weakness, COL1A1, COL4A3, pregnancy, preterm labour, single nucleotide polymorphism, SNP, TGFB1, TIMP2
Referências
  1. [Anonymous], 2014, Obstet Gynecol, V123, P372, DOI 10.1097/01.AOG.0000443276.68274.cc
  2. Au S, 2014, OPEN J OBSTET GYNECO, V4, P28
  3. Brown R, 2013, J OBSTET GYNAECOL CA, V35, P1115, DOI 10.1016/S1701-2163(15)30764-7
  4. Cartegni L, 2003, NUCLEIC ACIDS RES, V31, P3568, DOI 10.1093/nar/gkg616
  5. Edwards RK, 2006, AM J REPROD IMMUNOL, V55, P259, DOI 10.1111/j.1600-0897.2005.00358.x
  6. Endres LK, 2003, AM J PERINAT, V20, P109
  7. Goldenberg RL, 2008, LANCET, V371, P75, DOI 10.1016/S0140-6736(08)60074-4
  8. Hunt SE, 2018, DATABASE-OXFORD, DOI [10.1093/database/bay119, 10.1186/1471-2164-11-293]
  9. Iams JD, 2011, AM J OBSTET GYNECOL, V205, DOI 10.1016/j.ajog.2011.05.021
  10. Landrum MJ, 2018, NUCLEIC ACIDS RES, V46, pD1062, DOI 10.1093/nar/gkx1153
  11. Lotgering Frederik K, 2007, BMC Pregnancy Childbirth, V7 Suppl 1, pS17, DOI 10.1186/1471-2393-7-S1-S17
  12. Narad P, 2017, INTERDISCIP SCI, V9, P378, DOI 10.1007/s12539-016-0168-5
  13. National Library of Medicine (US), 2004, NAT CTR BIOT INF NAT CTR BIOT INF
  14. Norman JE, 2007, BEST PRACT RES CL OB, V21, P791, DOI 10.1016/j.bpobgyn.2007.03.002
  15. Raffi F, 2007, J OBSTET GYNAECOL, V27, P430, DOI 10.1080/01443610701327271
  16. RECHBERGER T, 1988, OBSTET GYNECOL, V71, P563
  17. Romero R, 2010, AM J OBSTET GYNECOL, V202, DOI 10.1016/j.ajog.2010.03.026
  18. Sherry ST, 2001, NUCLEIC ACIDS RES, V29, P308, DOI 10.1093/nar/29.1.308
  19. Simcox Rachael, 2007, Int J Surg, V5, P205, DOI 10.1016/j.ijsu.2006.02.006
  20. Sundtoft I, 2016, GYNECOL OBSTET INVES, V81, P15, DOI 10.1159/000381620
  21. Thomas PD, 2003, GENOME RES, V13, P2129, DOI 10.1101/gr.772403
  22. Volozonoka L, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0230771
  23. Warren JE, 2007, OBSTET GYNECOL, V110, P619, DOI 10.1097/01.AOG.0000277261.92756.1a
  24. Warren JE, 2009, SEMIN PERINATOL, V33, P308, DOI 10.1053/j.semperi.2009.06.003
  25. Zhang WQ, 2015, J GENET, V94, P731, DOI 10.1007/s12041-015-0588-8