Transcatheter Valve-in-Valve Procedures for Bioprosthetic Valve Dysfunction in Patients With Rheumatic vs. Non-Rheumatic Valvular Heart Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CARDIOVASCULAR MEDICINE, v.8, article ID 694339, 8p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Bioprosthetic heart valve has limited durability and lower long-term performance especially in rheumatic heart disease (RHD) patients that are often subject to multiple redo operations. Minimally invasive procedures, such as transcatheter valve-in-valve (ViV) implantation, may offer an attractive alternative, although data is lacking. The aim of this study was to evaluate the baseline characteristics and clinical outcomes in rheumatic vs. non-rheumatic patients undergoing ViV procedures for severe bioprosthetic valve dysfunction. Methods: Single center, prospective study, including consecutive patients undergoing transcatheter ViV implantation in aortic, mitral and tricuspid position, from May 2015 to September 2020. RHD was defined according to clinical history, previous echocardiographic and surgical findings. Results: Among 106 patients included, 69 had rheumatic etiology and 37 were non-rheumatic. Rheumatic patients had higher incidence of female sex (73.9 vs. 43.2%, respectively; p = 0.004), atrial fibrillation (82.6 vs. 45.9%, respectively; p < 0.001), and 2 or more prior surgeries (68.1 vs. 32.4%, respectively; p = 0.001). Although, device success was similar between groups (75.4 vs. 89.2% in rheumatic vs. non-rheumatic, respectively; p = 0.148), there was a trend toward higher 30-day mortality rates in the rheumatic patients (21.7 vs. 5.4%, respectively; p = 0.057). Still, at median followup of 20.7 [5.1-30.4] months, cumulative mortality was similar between both groups (p = 0.779). Conclusion: Transcatheter ViV implantation is an acceptable alternative to redo operations in the treatment of patients with RHD and severe bioprosthetic valve dysfunction. Despite similar device success rates, rheumatic patients present higher 30 day mortality rates with good mid-term clinical outcomes. Future studies with a larger number of patients and follow-up are still warranted, to firmly conclude on the role transcatheter ViV procedures in the RHD population.
Palavras-chave
heart valve prosthesis, rheumatic heart disease, bioprosthesis, mitral valve, aortic valve, transcatheter valve-in-valve, transapical access, transeptal access
Referências
  1. Bauernschmitt R, 2017, EUROINTERVENTION, V12, P1645, DOI 10.4244/EIJ-D-16-00896
  2. Bleiziffer S, 2020, EUR HEART J, V41, P2731, DOI 10.1093/eurheartj/ehaa544
  3. Bastos JBB, 2020, INTERACT CARDIOV TH, V31, P461, DOI 10.1093/icvts/ivaa142
  4. Caus T, 2001, ANN THORAC SURG, V71, pS261, DOI 10.1016/S0003-4975(01)02499-7
  5. de Andrade JP, 2009, ARQ BRAS CARDIOL, V93, P1
  6. Dvir D, 2014, JAMA-J AM MED ASSOC, V312, P162, DOI 10.1001/jama.2014.7246
  7. Essop MR, 2005, CIRCULATION, V112, P3584, DOI 10.1161/CIRCULATIONAHA.105.539775
  8. Exposito V, 2009, REV ESP CARDIOL, V62, P929, DOI 10.1016/S0300-8932(09)72076-7
  9. Gaia DF, 2012, INT J CARDIOL, V154, pE6, DOI 10.1016/j.ijcard.2011.03.001
  10. Gallo M, 2016, EXPERT REV MED DEVIC, V13, P749, DOI 10.1080/17434440.2016.1207521
  11. Godoy M, 2019, CURR CARDIOL REP, V21, DOI 10.1007/s11886-019-1241-6
  12. Guerrero M, 2020, CIRC-CARDIOVASC INTE, V13, DOI 10.1161/CIRCINTERVENTIONS.119.008425
  13. Isaacs AJ, 2015, J THORAC CARDIOV SUR, V149, P1262, DOI 10.1016/j.jtcvs.2015.01.052
  14. Kappetein AP, 2012, J AM COLL CARDIOL, V60, P1438, DOI [10.1016/j.jacc.2012.09.001, 10.1093/ejcts/ezs533]
  15. Landes U, 2020, J AM COLL CARDIOL, V75, P1882, DOI 10.1016/j.jacc.2020.02.051
  16. Leipsic J, 2011, JACC-CARDIOVASC IMAG, V4, P416, DOI 10.1016/j.jcmg.2011.01.014
  17. Lemos Fernanda Maria Correia Ferreira, 2018, Int. J. Cardiovasc. Sci., V31, P578, DOI 10.5935/2359-4802.20180059
  18. Marijon E, 2007, NEW ENGL J MED, V357, P470, DOI 10.1056/NEJMoa065085
  19. Marijon E, 2012, LANCET, V379, P953, DOI 10.1016/S0140-6736(11)61171-9
  20. McCormack, 2020, CADTH RAP RESP REP
  21. Narang A, 2016, J CARDIOVASC SURG, V57, P360
  22. da Costa LPN, 2020, INTERACT CARDIOV TH, V30, P229, DOI 10.1093/icvts/ivz265
  23. Ralph AP, 2021, MED J AUSTRALIA, V214, P220, DOI 10.5694/mja2.50851
  24. Russell EA, 2014, BMC CARDIOVASC DISOR, V14, DOI 10.1186/1471-2261-14-134
  25. Scherman J, 2020, INT J CARDIOL, V318, P104, DOI 10.1016/j.ijcard.2020.05.073
  26. Sengupta A, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.019854
  27. Simonato M, 2021, CIRCULATION, V143, P104, DOI 10.1161/CIRCULATIONAHA.120.049088
  28. Stone GW, 2015, J AM COLL CARDIOL, V66, P278, DOI 10.1016/j.jacc.2015.05.046
  29. Urena M, 2021, CIRCULATION, V143, P178, DOI 10.1161/CIRCULATIONAHA.120.048147
  30. Vogt PR, 2000, EUR J CARDIO-THORAC, V17, P134, DOI 10.1016/S1010-7940(99)00363-2
  31. Walther T, 2007, J AM COLL CARDIOL, V50, P56, DOI 10.1016/j.jacc.2007.03.030
  32. Yoon SH, 2019, EUR HEART J, V40, P441, DOI 10.1093/eurheartj/ehy590
  33. Yu HY, 2003, J THORAC CARDIOV SUR, V126, P80, DOI 10.1016/S0022-5223(02)73608-8
  34. Zahid S, 2021, AM J CARDIOL, V149, P155, DOI 10.1016/j.amjcard.2021.03.005
  35. Zuhlke L, 2014, BMJ OPEN, V4, DOI 10.1136/bmjopen-2014-004844