A promiscuous T cell epitope-based HIV vaccine providing redundant population coverage of the HLA class II elicits broad, polyfunctional T cell responses in nonhuman primates

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
MATTARAIA, Vania Gomes De Moura
VALENTINE, Elizabeth Juliana Ghiuro
SALES, Natiely Silva
FERREIRA, Luis Carlos S.
SA-ROCHA, Luiz Carlos
SANTANA, Vinicius Canato
SIDNEY, John
Citação
VACCINE, v.40, n.2, p.239-246, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4(+) and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7-11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.
Palavras-chave
HIV, DNA vaccine, Rhesus macaques, T cell epitope, Populational vaccine, Multiple HLA-binding epitopes
Referências
  1. Akondy RS, 2009, J IMMUNOL, V183, P7919, DOI 10.4049/jimmunol.0803903
  2. Aubert RD, 2011, P NATL ACAD SCI USA, V108, P21182, DOI 10.1073/pnas.1118450109
  3. Barouch DH, 2010, ANNU REV MED, V61, P153, DOI 10.1146/annurev.med.042508.093728
  4. Boaz MJ, 2002, J IMMUNOL, V169, P6376, DOI 10.4049/jimmunol.169.11.6376
  5. Bui HH, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-153
  6. Emu B, 2005, J VIROL, V79, P14169, DOI 10.1128/JVI.79.22.14169-14178.2005
  7. Ferre AL, 2010, J VIROL, V84, P11020, DOI 10.1128/JVI.00980-10
  8. Fonseca SG, 2006, AIDS, V20, P2263, DOI 10.1097/01.aids.0000253353.48331.5f
  9. Hansen SG, 2011, NATURE, V473, P523, DOI 10.1038/nature10003
  10. Hansen SG, 2009, NAT MED, V15, P293, DOI 10.1038/nm.1935
  11. Haynes BF, 2013, CURR OPIN HIV AIDS, V8, P326, DOI 10.1097/COH.0b013e328361d178
  12. Haynes BF, 2012, NEW ENGL J MED, V366, P1275, DOI 10.1056/NEJMoa1113425
  13. Hirao LA, 2008, VACCINE, V26, P3112, DOI 10.1016/j.vaccine.2008.02.036
  14. Hirao LA, 2010, MOL THER, V18, P1568, DOI 10.1038/mt.2010.112
  15. Hsu DC, 2017, HUM VACC IMMUNOTHER, V13, P1018, DOI 10.1080/21645515.2016.1276138
  16. Iwai LK, 2003, MOL MED, V9, P209, DOI 10.1007/BF03402131
  17. James EA, 2013, J VIROL, V87, P12794, DOI 10.1128/JVI.01160-13
  18. Janes H, 2013, J INFECT DIS, V208, P1231, DOI 10.1093/infdis/jit322
  19. Kalams SA, 2013, J INFECT DIS, V208, P818, DOI 10.1093/infdis/jit236
  20. Liu JY, 2009, NATURE, V457, P87, DOI 10.1038/nature07469
  21. Luckay A, 2007, J VIROL, V81, P5257, DOI 10.1128/JVI.00055-07
  22. Martinez V, 2005, J INFECT DIS, V191, P2053, DOI 10.1086/430320
  23. Martins MA, 2010, J VIROL, V84, P4352, DOI 10.1128/JVI.02365-09
  24. Mukhopadhyay M, 2017, J IMMUNOL, V199, P3437, DOI 10.4049/jimmunol.1700953
  25. Otten G, 2004, VACCINE, V22, P2489, DOI 10.1016/j.vaccine.2003.11.073
  26. Owen RE, 2010, AIDS, V24, P1095, DOI 10.1097/QAD.0b013e3283377a1e
  27. Precopio ML, 2007, J EXP MED, V204, P1405, DOI 10.1084/jem.20062363
  28. Ranasinghe S, 2012, J VIROL, V86, P277, DOI 10.1128/JVI.05577-11
  29. Ribeiro SP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011072
  30. Rosa DS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016921
  31. Rosati M, 2008, VACCINE, V26, P5223, DOI 10.1016/j.vaccine.2008.03.090
  32. Sette A, 2021, CELL, V184, P861, DOI 10.1016/j.cell.2021.01.007
  33. Sidney John, 2013, Curr Protoc Immunol, VChapter 18, DOI 10.1002/0471142735.im1803s100
  34. Sun CJ, 2010, J INFECTION, V60, P371, DOI 10.1016/j.jinf.2010.03.005
  35. Vasan S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019252
  36. Wilson NA, 2009, J VIROL, V83, P6508, DOI 10.1128/JVI.00272-09