Genetic investigation of patients with tall stature

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOSCIENTIFICA LTD
Citação
EUROPEAN JOURNAL OF ENDOCRINOLOGY, v.182, n.2, p.139-147, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context: Patients with tall stature often remain undiagnosed after clinical investigation and few studies have genetically assessed this group, most of them without a systematic approach. Objective: To assess prospectively a group of individuals with tall stature, with and without syndromic features, and to establish a molecular diagnosis for their growth disorder. Design: Screening by karyotype (n = 42), chromosome microarray analyses (CMA) (n = 16), MS-MLPA (n = 2) targeted panel (n = 12) and whole-exome sequencing (n = 31). Patients and methods: We selected 42 patients with tall stature after exclusion of pathologies in GH/IGF1 axis and divided them into syndromic (n = 30) and non-syndromic (n = 12) subgroups. Main outcome measures: Frequencies of pathogenic findings. Results: We identified two patients with chromosomal abnormalities including SHOX trisomy by karyotype, one 9q22.3 microdeletion syndrome by CMA, two cases of Beckwith-Wiedemann syndrome by targeted MS-MLPA analysis and nine cases with heterozygous pathogenic or likely pathogenic genetic variants by multigene analysis techniques (FBN1 = 3, NSD1 = 2, NFIX = 1, SUZ12 = 1, CHD8 = 1, MC4R = 1). Three of 20 patients analyzed by WES had their diagnosis established. Only one non-syndromic patient had a definitive diagnosis. The sequential genetic assessment diagnosed 14 out of 42 (33.3%) tall patients. Conclusion: A systematic molecular approach of patients with tall stature was able to identify the etiology in 13 out of 30 (43.3%) syndromic and 1 out of 12 (8.3%) non-syndromic patients, contributing to the genetic counseling and avoiding unfavorable outcomes in the syndromic subgroup.
Palavras-chave
Referências
  1. Albuquerque EVA, 2017, EUR J ENDOCRINOL, V176, pR339, DOI 10.1530/EJE-16-1054
  2. Baron J, 2015, NAT REV ENDOCRINOL, V11, P735, DOI 10.1038/nrendo.2015.165
  3. Comeglio Paolo, 2007, Hum Mutat, V28, P928, DOI 10.1002/humu.9505
  4. Farooqi IS, 2003, NEW ENGL J MED, V348, P1085, DOI 10.1056/NEJMoa022050
  5. Fredriks AM, 2005, ARCH DIS CHILD, V90, P807, DOI 10.1136/adc.2004.050799
  6. Greulich W.W., 1959, RADIOGRAPHIC ATLAS S
  7. Imagawa E, 2018, CLIN GENET, V94, P461, DOI 10.1111/cge.13415
  8. Katznelson L, 2014, J CLIN ENDOCR METAB, V99, P3933, DOI 10.1210/jc.2014-2700
  9. Kuczmarski R J, 2000, Adv Data, P1
  10. Lauffer P, 2019, HORM RES PAEDIAT, V91, P293, DOI 10.1159/000500810
  11. Loeys BL, 2010, J MED GENET, V47, P476, DOI 10.1136/jmg.2009.072785
  12. Malan V, 2010, AM J HUM GENET, V87, P189, DOI 10.1016/j.ajhg.2010.07.001
  13. MARSHALL WA, 1969, ARCH DIS CHILD, V44, P291, DOI 10.1136/adc.44.235.291
  14. MARSHALL WA, 1970, ARCH DIS CHILD, V45, P13, DOI 10.1136/adc.45.239.13
  15. Priolo M, 2018, HUM MUTAT, V39, P1226, DOI 10.1002/humu.23563
  16. Redon R, 2006, EUR J HUM GENET, V14, P759, DOI 10.1038/sj.ejhg.5201613
  17. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  18. Tatton-Brown K, 2005, AM J HUM GENET, V77, P193, DOI 10.1086/432082
  19. Tatton-Brown K, 1993, GENEREVIEWS
  20. Tatton-Brown K, 2007, EUR J HUM GENET, V15, P264, DOI 10.1038/sj.ejhg.5201686
  21. Tatton-Brown K, 2017, AM J HUM GENET, V100, P725, DOI 10.1016/j.ajhg.2017.03.010
  22. Tatton-Brown K, 2013, AM J MED GENET A, V161, P2972, DOI 10.1002/ajmg.a.36229
  23. Thomsett MJ, 2009, J PAEDIATR CHILD H, V45, P58, DOI 10.1111/j.1440-1754.2008.01428.x
  24. Upners EN, 2016, PEDIATR RES, V80, P693, DOI 10.1038/pr.2016.128
  25. Vaisse C, 2000, J CLIN INVEST, V106, P253, DOI 10.1172/JCI9238
  26. Vasques GA, 2017, J PEDIATR ENDOCR MET, V30, P111, DOI 10.1515/jpem-2016-0280