The crosstalk between bone metabolism, lncRNAs, microRNAs and mRNAs in coronary artery calcification

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citação
GENOMICS, v.113, n.1, p.503-513, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The association between Coronary Artery Calcification (CAC) and osteoporosis has been reported but not fully understood. Therefore, using an original bioinformatic framework we analyzed transcriptomic profiles of 20 elderly women with high CAC score and 31 ageand sex-matching controls from Sao Paulo Ageing & Health study (SPAH). We integrated differentially expressed microRNA (miRNA) and long-noncoding RNA (lncRNA) interactions with coding genes associated with CAC, in the context of bone-metabolism genes mined from literature. Top non-coding regulators of bone metabolism in CAC included miRNA 497-5p/195 and 106a-5p, and lncRNA FAM197Y7. Top non-coding RNAs revealed significant interplay between genes regulating bone metabolism, vascularization-related processes, chromatin organization, prostaglandin and calcium co-signaling. Prostaglandin E2 receptor 3 (PTGER3), Fibroblasts Growth Factor Receptor 1 (FGFR1), and One Cut Homeobox 2 (ONECUT2) were identified as the most susceptible to regulation by the top non-coding RNAs. This study provides a flexible transcriptomic framework including non-coding regulation for biomarker-related studies.
Palavras-chave
Coronary artery calcification, Transcriptome, Bone metabolism, miRNA, lncRNA
Referências
  1. [Anonymous], 2014, PLOS ONE, V9
  2. Beattie JR, 2017, J RAMAN SPECTROSC, V48, P813, DOI 10.1002/jrs.5123
  3. Bennett HS, 2006, J CLIN DENSITOM, V9, P399, DOI 10.1016/j.jocd.2006.06.003
  4. Borissoff JI, 2013, ARTERIOSCL THROM VAS, V33, P2032, DOI 10.1161/ATVBAHA.113.301627
  5. Caraher MC, 2018, BBA-MOL BASIS DIS, V1864, P398, DOI 10.1016/j.bbadis.2017.10.020
  6. Cawley S, 2004, CELL, V116, P499, DOI 10.1016/S0092-8674(04)00127-8
  7. Cho KI, 2018, ATHEROSCLEROSIS, V277, P60, DOI 10.1016/j.atherosclerosis.2018.08.029
  8. Chole RA, 2001, JARO, V2, P65
  9. COTMORE JM, 1971, SCIENCE, V172, P1339, DOI 10.1126/science.172.3990.1339
  10. Danilevicius CF, 2007, BRAZ J MED BIOL RES, V40, P435, DOI 10.1590/S0100-879X2007000400001
  11. Demer LL, 2008, CIRCULATION, V117, P2938, DOI 10.1161/CIRCULATIONAHA.107.743161
  12. Dong YH, 2018, CELL MOL LIFE SCI, V75, P291, DOI 10.1007/s00018-017-2640-8
  13. Elsherif L, 2008, CIRC RES, V102, P1109, DOI 10.1161/CIRCRESAHA.108.173153
  14. Essebier A, 2017, METHODS, V131, P111, DOI 10.1016/j.ymeth.2017.09.001
  15. Figueiredo CP, 2013, BONE, V52, P354, DOI 10.1016/j.bone.2012.10.019
  16. Gattineni J, 2014, AM J PHYSIOL-RENAL, V306, pF351, DOI 10.1152/ajprenal.00232.2013
  17. Grunhagen J, 2015, J BONE MINER RES, V30, P796, DOI 10.1002/jbmr.2412
  18. Habeebu SS, 2000, TOXICOL SCI, V56, P211, DOI 10.1093/toxsci/56.1.211
  19. Hofbauer LC, 2007, OSTEOPOROSIS INT, V18, P251, DOI 10.1007/s00198-006-0282-z
  20. Javed A, 2010, ORAL MAXIL SURG CLIN, V22, P283, DOI 10.1016/j.coms.2010.05.001
  21. Kampa D, 2004, GENOME RES, V14, P331, DOI 10.1101/gr.2094104
  22. Kdoqi F., AM J KIDNEY DIS, V47
  23. Kim YK, 2019, ARCH PHARM RES, V42, P244, DOI 10.1007/s12272-019-01118-z
  24. Lee JT, 2012, SCIENCE, V338, P1435, DOI 10.1126/science.1231776
  25. Lima-Costa Maria Fernanda, 2003, Rev Panam Salud Publica, V13, P387, DOI 10.1590/S1020-49892003000500007
  26. Lin GL, 2011, J CELL BIOCHEM, V112, P3491, DOI 10.1002/jcb.23287
  27. Liu DL, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-77
  28. Liu JH, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174138
  29. Lopes JB, 2011, OSTEOPOROSIS INT, V22, P711, DOI 10.1007/s00198-010-1258-6
  30. Mak S, 2010, ATHEROSCLEROSIS, V213, P40, DOI 10.1016/j.atherosclerosis.2010.06.038
  31. Martin E.W., 2018, CELLS-BASEL, P7
  32. Mihailovic PM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213025
  33. Mirsaidi A., 2017, SCI REP-UK, P7
  34. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  35. Pillay I, 2005, J WOMENS HEALTH, V14, P339, DOI 10.1089/jwh.2005.14.339
  36. Pordzik J, 2019, CARDIOVASC DIABETOL, V18, DOI 10.1186/s12933-019-0918-x
  37. Rinn JL, 2012, ANNU REV BIOCHEM, V81, P145, DOI 10.1146/annurev-biochem-051410-092902
  38. Ru YB, 2014, NUCLEIC ACIDS RES, V42, DOI 10.1093/nar/gku631
  39. Sabatino J, 2019, J MOL CELL CARDIOL, V134, P98, DOI 10.1016/j.yjmcc.2019.07.001
  40. Scazufca M, 2008, INT J EPIDEMIOL, V37, P879, DOI 10.1093/ije/dyn125
  41. Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  42. Silva AM, 2019, BONE RES, V7, DOI 10.1038/s41413-019-0048-9
  43. Solomon DH, 2006, ANN RHEUM DIS, V65, P1608, DOI 10.1136/ard.2005.050377
  44. Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937
  45. Taipaleenmaki H, 2012, EUR J ENDOCRINOL, V166, P359, DOI 10.1530/EJE-11-0646
  46. Talukdar HA, 2016, CELL SYST, V2, P196, DOI 10.1016/j.cels.2016.02.002
  47. Tang L, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/9642589
  48. Terai G, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-015-2307-5
  49. Untergasser A, 2012, NUCLEIC ACIDS RES, V40, DOI 10.1093/nar/gks596
  50. Vickers KC, 2011, NAT CELL BIOL, V13, P423, DOI 10.1038/ncb2210
  51. Webster MK, 1997, TRENDS GENET, V13, P178, DOI 10.1016/S0168-9525(97)01131-1
  52. Whitten L., 2006, PSYCEXTRA DATASET
  53. Wiegandt YL, 2019, BONE, V121, P116, DOI 10.1016/j.bone.2019.01.010
  54. Wu QY, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00587
  55. Xiao Z., 2021, OSTEOCYTE SPECIFIC D, V113, P503
  56. Yoon JH, 2014, SEMIN CELL DEV BIOL, V34, P9, DOI 10.1016/j.semcdb.2014.05.015
  57. Yoon YE, 2019, JACC-CARDIOVASC IMAG, V12, P1202, DOI 10.1016/j.jcmg.2018.07.004
  58. Zhang YQ, 2017, SCI REP-UK, V7, DOI 10.1038/srep46907