Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure

Carregando...
Imagem de Miniatura
Citações na Scopus
28
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Autores
MENDES, Erica Araujo
PILGER, Denise Regina Bairros de
PASCOALINO, Bruno dos Santos
BALAN, Andrea
JR, Lucio Holanda Gondim de Freitas
DURIGON, Edison Luis
Citação
ANNALS OF HEPATOLOGY, v.18, n.6, p.816-824, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction and objectives: Direct antiviral agents (DAAs) are very efficient in inhibiting hepatitis C virus and might be used to treat infections caused by other flaviviruses whose worldwide detection has recently increased. The aim of this study was to verify the efficacy of DAAs in inhibiting yellow fever virus (YFV) by using drug repositioning (a methodology applied in the pharmaceutical industry to identify new uses for approved drugs). Materials and methods: Three DAAs were evaluated: daclatasvir, sofosbuvir and ledipasvir or their combinations. For in vitro assays, the drugs were diluted in 100% dimethyl sulfoxide. Vaccine strain 17D and a 17D strain expressing the reporter fluorescent protein were used in the assays. A fast and reliable cell-based screening assay using Vero cells or Huh-7 cells (a hepatocyte-derived carcinoma ell line) was carried out. Two patients who acquired yellow fever virus with acute liver failure were treated with sofosbuvir for one week as a compassionate use. Results: Using a high-content screening assay, we verified that sofosbuvir presented the best antiviral activity against YFV. Moreover, after an off-label treatment with sofosbuvir, the two female patients diagnosed with yellow fever infection displayed a reduction in blood viremia and an improvement in the course of the disease, which was observed in the laboratory medical parameters related to disease evolution. Conclusions: Sofosbuvir may be used as an option for treatment against YFV until other drugs are identified and approved for human use. These results offer insights into the role of nonstructural protein 5 (NS5) in YFV inhibition and suggest that nonstructural proteins may be explored as drug targets for YFV treatment. (C) 2019 Fundacion Clinica Medica Sur, A.C.
Palavras-chave
Acute hepatitis, Flavivirus, YFV, Treatment, Antiviral
Referências
  1. [Anonymous], 2016, WKLY EPIDEMIOL REC, V92, P442
  2. Appleby TC, 2015, SCIENCE, V347, P771, DOI 10.1126/science.1259210
  3. Best SM, 2017, J VIROL, V91, DOI [10.1128/JVI.01970-16, 10.1128/jvi.01970-16]
  4. Casadio LVB, 2019, MEM I OSWALDO CRUZ, V114, DOI 10.1590/0074-02760190033
  5. Bullard-Feibelman KM, 2017, ANTIVIR RES, V137, P134, DOI 10.1016/j.antiviral.2016.11.023
  6. Caillet-Saguy C, 2014, ANTIVIR RES, V105, P8, DOI 10.1016/j.antiviral.2014.02.006
  7. Duarte-Neto AN, 2019, HISTOPATHOLOGY, V75, P638, DOI 10.1111/his.13904
  8. Faria NR, 2017, NATURE, V546, P406, DOI 10.1038/nature22401
  9. Faye O, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002636
  10. Freitas CS, 2019, PLOS NEGLECT TROP D, V13, pe7072
  11. Gane EJ, 2013, NEW ENGL J MED, V368, P34, DOI 10.1056/NEJMoa1208953
  12. Gara N, 2013, CLIN INFECT DIS, V56, P1629, DOI 10.1093/cid/cit074
  13. Goldani LZ, 2017, BRAZ J INFECT DIS, V21, P123, DOI 10.1016/j.bjid.2017.02.004
  14. Gorcea CM, 2017, J HOSP INFECT, V95, P214, DOI 10.1016/j.jhin.2016.11.012
  15. Gritsenko Diana, 2015, P T, V40, P256
  16. Guedj J, 2014, ANTIVIR THER, V19, P152
  17. Hosokawa M, 2008, MOLECULES, V13, P412, DOI 10.3390/molecules13020412
  18. Julander JG, 2007, ANTIVIR RES, V73, P140, DOI 10.1016/j.antiviral.2006.08.008
  19. Kraemer MUG, 2017, LANCET INFECT DIS, V17, P330, DOI [10.1016/S1473-3099(16)30513-8, 10.1016/s1473-3099(16)30513-8]
  20. Lanciotti RS, 2008, EMERG INFECT DIS, V14, P1232, DOI 10.3201/eid1408.080287
  21. Lemm JA, 2010, J VIROL, V84, P482, DOI 10.1128/JVI.01360-09
  22. Leyssen P, 2006, MOL PHARMACOL, V69, P1461, DOI 10.1124/mol.105.020057
  23. Medina F, 2012, CURR PROTOC MICROBIO
  24. Monath TP, 2015, J CLIN VIROL, V64, P160, DOI 10.1016/j.jcv.2014.08.030
  25. Musso D, 2016, CLIN MICROBIOL REV, V29, P487, DOI 10.1128/CMR.00072-15
  26. Neyts J, 1996, ANTIVIR RES, V30, P125, DOI 10.1016/0166-3542(96)89697-5
  27. Notredame C, 2000, J MOL BIOL, V302, P205, DOI 10.1006/jmbi.2000.4042
  28. Pascoalino Bruno S, 2016, F1000Res, V5, P2523
  29. Poordad F, 2016, HEPATOLOGY, V63, P1493, DOI 10.1002/hep.28446
  30. Reddy KR, 2015, HEPATOLOGY, V15
  31. Reznik SE, 2016, INT J INFECT DIS, V55, P29
  32. Sacramento CQ, 2017, SCI REP-UK, V7, DOI 10.1038/srep40920
  33. Sato K, 2018, HEPATOL RES, V48, pE347, DOI 10.1111/hepr.12971
  34. Zhang JH, 2012, J BIOMOL SCREEN, V1999