Isolation and characterization of Toxoplasma gondii isolates from human congenital toxoplasmosis cases reveal a new virulent genotype in Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
PARASITOLOGY RESEARCH, v.121, n.11, p.3223-3228, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Toxoplasma gondii causes severe disease in congenitally infected fetuses. The severity of fetal infection is related to the gestational stage at the time of maternal infection, parasite burden, and genotypic characteristics. South America has a high incidence of congenital toxoplasmosis and has the highest genotypic diversity of the parasite. In Brazil, clinical toxoplasmosis in children is notorious, however there are very limited data regarding the strains recovered from congenital infections. In this study, T. gondii strains from two cases of severe congenital toxoplasmosis from the Sao Paulo metropolitan area were isolated (TgHumIMTBr2 and TgHumIMTBr3) and biologically and molecularly characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and microsatellite analysis, revealing a new non-archetypal virulent genotype designated as #318. The other isolate, genotype #175, has already been described in domestic and wild animals in Brazil, but is now associated with acute toxoplasmosis in humans. These data reinforce the role of non-archetypal T. gondii genotypes in the severity of human congenital toxoplasmosis, highlighting the importance of studies focused on parasite isolation and genotyping for a better understanding of the virulence of isolates from human toxoplasmosis and contributing to the knowledge of the diversity of T. gondii in Brazil.
Palavras-chave
Toxoplasmosis, PCR-RFLP, Microsatellites, Vertical transmission
Referências
  1. Carneiro ACAV, 2013, J CLIN MICROBIOL, V51, P901, DOI 10.1128/JCM.02502-12
  2. Ajzenberg D, 2010, J CLIN MICROBIOL, V48, P4641, DOI 10.1128/JCM.01152-10
  3. Cabral AD, 2013, VET PARASITOL, V193, P100, DOI 10.1016/j.vetpar.2012.11.015
  4. Demar M, 2007, CLIN INFECT DIS, V45, pE88, DOI 10.1086/521246
  5. Dubey JP, 1998, VET PARASITOL, V74, P75, DOI 10.1016/S0304-4017(97)00135-0
  6. Guimaraes A. C. S., 1993, Revista do Instituto de Medicina Tropical de Sao Paulo, V35, P479, DOI 10.1590/S0036-46651993000600001
  7. Higa LT, 2014, T ROY SOC TROP MED H, V108, P244, DOI 10.1093/trstmh/tru014
  8. Huson DH, 2006, MOL BIOL EVOL, V23, P254, DOI 10.1093/molbev/msj030
  9. Huson DH, 1998, BIOINFORMATICS, V14, P68, DOI 10.1093/bioinformatics/14.1.68
  10. Pena HFJ, 2018, VET PARASITOL REG ST, V13, P55, DOI 10.1016/j.vprsr.2018.04.001
  11. Minuzzi CE, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228442
  12. Pena HFJ, 2008, INT J PARASITOL, V38, P561, DOI 10.1016/j.ijpara.2007.09.004
  13. Pena HFJ, 2021, PARASITOL RES, V120, P1109, DOI 10.1007/s00436-020-07008-4
  14. Silva JCR, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2150-4
  15. Shwab EK, 2014, PARASITOLOGY, V141, P453, DOI 10.1017/S0031182013001844
  16. Strang AGGF, 2020, ACTA TROP, V211, DOI 10.1016/j.actatropica.2020.105608
  17. Su C, 2006, INT J PARASITOL, V36, P841, DOI 10.1016/j.ijpara.2006.03.003
  18. Su C, 2010, PARASITOLOGY, V137, P1, DOI 10.1017/S0031182009991065
  19. Vitaliano S. N., 2014, International Journal for Parasitology Parasites and Wildlife, V3, P276, DOI 10.1016/j.ijppaw.2014.09.003
  20. Yai LEO, 2009, VET PARASITOL, V162, P332, DOI 10.1016/j.vetpar.2009.03.007