DNA methylation mediates a randomized controlled trial home-visiting intervention during pregnancy and the Bayley infant's cognitive scores at 12 months of age

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Citação
JOURNAL OF DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, v.13, n.5, p.556-565, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The crosstalk between maternal stress exposure and fetal development may be mediated by epigenetic mechanisms, including DNA methylation (DNAm). To address this matter, we collect 32 cord blood samples from low-income Brazilian pregnant adolescents participants of a pilot randomized clinical intervention study (ClinicalTrials.gov, Identifier: NCT02807818). We hypothesized that the association between the intervention and infant neurodevelopmental outcomes at 12 months of age would be mediated by DNAm. First, we searched genome methylation differences between cases and controls using different approaches, as well as differences in age acceleration (AA), represented by the difference of methylation age and birth age. According to an adjusted p-value <= 0.05 we identified 3090 differentially methylated positions- CpG sites (DMPs), 21 differentially methylated regions (DMRs) and one comethylated module weakly preserved between groups. The intervention group presented a smaller AA compared to the control group (p = 0.025). A logistic regression controlled by sex and with gestational age indicated a coefficient of -0.35 towards intervention group (p = 0.016) considering AA. A higher cognitive domain score from Bayley III scale was observed in the intervention group at 12 months of age. Then, we performed a potential causal mediation analysis selecting only DMPs highly associated with the cognitive domain (adj. R (2) > 0.4), DMRs and CpGs of hub genes from the weakly preserved comethylated module and epigenetic clock as raw values. DMPs in STXBP6, and PF4 DMR, mediated the association between the maternal intervention and the cognitive domain at 12 months of age. In conclusion, DNAm in different sites and regions mediated the association between intervention and cognitive outcome.
Palavras-chave
DNA methylation, maternal-fetal relations, mediation analysis, prenatal care
Referências
  1. Aboud FE, 2015, ANNU REV PSYCHOL, V66, P433, DOI 10.1146/annurev-psych-010814-015128
  2. Al-Bassam S, 2012, CELL REPORTS, V2, P89, DOI 10.1016/j.celrep.2012.05.018
  3. Albers CA, 2007, J PSYCHOEDUC ASSESS, V25, P180, DOI 10.1177/0734282906297199
  4. Aryee MJ, 2014, BIOINFORMATICS, V30, P1363, DOI 10.1093/bioinformatics/btu049
  5. Associacao Brasileira de Empresas de Pesquisa (ABEP), 2015, CRIT CLASS EC CRIT B
  6. Barker ED, 2018, J CHILD PSYCHOL PSYC, V59, P303, DOI 10.1111/jcpp.12782
  7. Boland MJ, 2017, BRAIN, V140, P582, DOI 10.1093/brain/aww357
  8. Britto PR, 2017, LANCET, V389, P91, DOI 10.1016/S0140-6736(16)31390-3
  9. Caramaschi D, 2017, HUM MOL GENET, V26, P3001, DOI 10.1093/hmg/ddx164
  10. Castro MC, 2019, LANCET, V394, P345, DOI 10.1016/S0140-6736(19)31243-7
  11. de Onis M, 2009, ARCH PEDIATRIE, V16, P47, DOI 10.1016/j.arcped.2008.10.010
  12. DeSocio JE, 2018, ARCH PSYCHIAT NURS, V32, P901, DOI 10.1016/j.apnu.2018.09.001
  13. Dieckmann L, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-0730-0
  14. Duclot F, 2017, FRONT BEHAV NEUROSCI, V11, DOI 10.3389/fnbeh.2017.00035
  15. Felix JF, 2019, J DEV ORIG HLTH DIS, V10, P306, DOI 10.1017/S2040174418000442
  16. Fisher PA, 2016, ANNU REV CLIN PSYCHO, V12, P331, DOI 10.1146/annurev-clinpsy-032814-112855
  17. Fortin JP, 2017, BIOINFORMATICS, V33, P558, DOI 10.1093/bioinformatics/btw691
  18. Fracolli LA, 2018, REV ESC ENFERM USP, V52, DOI [10.1590/S1980-220X2017044003361, 10.1590/s1980-220x2017044003361]
  19. Girchenko P, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0349-z
  20. Goldstein JA, 2017, J DEV ORIG HLTH DIS, V8, P273, DOI 10.1017/S2040174417000010
  21. Gomes-Oliveira MH, 2012, REV BRAS PSIQUIATR, V34, P389, DOI 10.1016/j.rbp.2012.03.005
  22. Han VX, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01198-w
  23. Herba CM, 2016, LANCET PSYCHIAT, V3, P983, DOI 10.1016/S2215-0366(16)30148-1
  24. Javed R, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/4515928
  25. Kasper B, 2007, J IMMUNOL, V179, P2584, DOI 10.4049/jimmunol.179.4.2584
  26. Kertes DA, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0367-x
  27. Knight AK, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1068-z
  28. Kumsta R, 2019, PSYCHOL PSYCHOTHER-T, V92, P190, DOI 10.1111/papt.12227
  29. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  30. Langfelder P, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1001057
  31. Lee J, 2017, ENVIRON INT, V99, P315, DOI 10.1016/j.envint.2016.12.009
  32. Lewis RM, 2012, PLACENTA, V33, pS28, DOI 10.1016/j.placenta.2011.12.003
  33. Lyall K, 2014, INT J EPIDEMIOL, V43, P443, DOI 10.1093/ije/dyt282
  34. Madaschi Vanessa, 2016, Paidéia (Ribeirão Preto), V26, P189, DOI 10.1590/1982-43272664201606
  35. Matsui T, 2017, DEVELOPMENT, V144, P1025, DOI 10.1242/dev.143636
  36. Miller Christopher W T, 2017, Psychiatry J, V2017, P5491812, DOI 10.1155/2017/5491812
  37. Neumann A, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-01058-z
  38. Niego A, 2021, AUTISM, V25, P464, DOI 10.1177/1362361320965074
  39. O'Donnell KJ, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-017-0063-9
  40. Perez-Escamilla R, 2004, J NUTR, V134, P1923, DOI 10.1093/jn/134.8.1923
  41. Peters TJ, 2015, EPIGENET CHROMATIN, V8, DOI 10.1186/1756-8935-8-6
  42. Quintao S, 2013, PSICOL-REFLEX CRIT, V26, P305, DOI 10.1590/S0102-79722013000200010
  43. Rampello AJ, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10030468
  44. Rijlaarsdam J, 2017, AUTISM RES, V10, P430, DOI 10.1002/aur.1681
  45. Rutten BPF, 2018, MOL PSYCHIATR, V23, P1145, DOI 10.1038/mp.2017.120
  46. Scales SJ, 2002, J BIOL CHEM, V277, P28271, DOI 10.1074/jbc.M204929200
  47. Shiau S, 2021, EPIGENETICS-US, V16, P186, DOI 10.1080/15592294.2020.1790924
  48. Song HD, 2018, J CELL MOL MED, V22, P277, DOI 10.1111/jcmm.13317
  49. Strong E, 2015, AM J HUM GENET, V97, P216, DOI 10.1016/j.ajhg.2015.05.019
  50. Suarez A, 2018, J AM ACAD CHILD PSY, V57, P321, DOI 10.1016/j.jaac.2018.02.011
  51. Tian Y, 2017, BIOINFORMATICS, V33, P3982, DOI 10.1093/bioinformatics/btx513
  52. Tingley D, 2014, J STAT SOFTW, V59
  53. Tobi EW, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao4364
  54. Viuff AC, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-018-0286-4
  55. Yamasaki T, 2017, NEURON, V93, P1138, DOI 10.1016/j.neuron.2017.02.023