Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system

Carregando...
Imagem de Miniatura
Citações na Scopus
39
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.12, n.8, article ID e0183314, 14p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Transforming growth factor beta 1 (TGF beta 1), the uteroplacental renin-angiotensin system (RAS) and vascular endothelial growth factor A (VEGF-A) participate in the placentation process. The aim of this study was to investigate the effects of exposure to pollutants on the placenta. Methods Female Wistar rats were exposed to filtered air (F) or to concentrated fine particulate matter (P) for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP) beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGF beta 1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR. Results Exposure to P decreased the placental mass, size, and surface area as well as the TGF beta 1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII) and its receptors AT(1) (AT(1)R) and AT(2) (AT(2)R) were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT(2)R in the PF and PP groups were decreased, but AT(1)R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group. Conclusions Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.
Palavras-chave
Referências
  1. Adeladza KA, 2014, PLOS ONE, V9
  2. Andrade FG, 2014, BMC CANCER, V14, DOI 10.1186/1471-2407-14-133
  3. Araujo JA, 2008, CIRC RES, V102, P589, DOI 10.1161/CIRCRESAHA.107.164970
  4. Backes CH, 2013, TOXICOL LETT, V216, P47, DOI 10.1016/j.toxlet.2012.11.007
  5. Barker DJP, 2010, J DEV ORIG HLTH DIS, V1, P360, DOI 10.1017/S2040174410000280
  6. BARKER DJP, 1989, BRIT MED J, V298, P564
  7. Batalha JRF, 2002, ENVIRON HEALTH PERSP, V110, P1191
  8. Bauer MK, 1998, MOL CELL ENDOCRINOL, V140, P115, DOI 10.1016/S0303-7207(98)00039-2
  9. Caniggia I, 1999, J CLIN INVEST, V103, P1641, DOI 10.1172/JCI6380
  10. Castellano DS, 2013, MED SCI MONITOR, V19, P1043, DOI 10.12659/MSM.884027
  11. CROSS JC, 1994, SCIENCE, V266, P1508, DOI 10.1126/science.7985020
  12. Damm P, 2007, APPL PHYSIOL NUTR ME, V32, P537, DOI 10.1139/H07-027
  13. de Melo JO, 2015, TOXICOL LETT, V232, P475, DOI 10.1016/j.toxlet.2014.12.001
  14. Gouveia N, 2004, J EPIDEMIOL COMMUN H, V58, P11, DOI 10.1136/jech.58.1.11
  15. Hering L, 2010, HYPERTENSION, V56, P311, DOI 10.1161/HYPERTENSIONAHA.110.150961
  16. Holmes DIR, 2005, GENOME BIOL, V6, DOI 10.1186/gb-2005-6-2-209
  17. Koch S, 2011, BIOCHEM J, V437, P169, DOI 10.1042/BJ20110301
  18. Lafontaine L, 2011, BIOL REPROD, V84, P553, DOI 10.1095/biolreprod.110.086348
  19. Lanari M, 2015, RESP RES, V16, DOI 10.1186/s12931-015-0312-5
  20. Lash GE, 2005, BIOL REPROD, V73, P374, DOI 10.1095/biolreprod.105.040337
  21. Li ZW, 2005, ENVIRON HEALTH PERSP, V113, P1009, DOI 10.1289/ehp.7736
  22. Maisonet M, 2001, ENVIRON HEALTH PERSP, V109, P351, DOI 10.2307/3434782
  23. Membranes ELISA protocol, PROTEIMAX BIOTECNOLO
  24. Nielsen AH, 2000, PLACENTA, V21, P468, DOI 10.1053/plac.2000.0535
  25. Perera F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004488
  26. Pope CA, 2006, J AIR WASTE MANAGE, V56, P709
  27. Regnault TRH, 2002, PLACENTA, V23, pS119, DOI 10.1053/plac.2002.0792
  28. Silva IRRE, 2008, FERTIL STERIL, V90, P1921, DOI 10.1016/j.fertnstert.2007.10.001
  29. SANTOS RAS, 1985, HYPERTENSION, V7, P244
  30. Selesniemi K, 2005, STEM CELLS DEV, V14, P697, DOI 10.1089/scd.2005.14.697
  31. Shibuya M, 2006, EXP CELL RES, V312, P549, DOI 10.1016/j.yexcr.2005.11.012
  32. Shibuya M, 2013, J BIOCHEM, V153, P13, DOI 10.1093/jb/mvs136
  33. SHIRLEY B, 1984, LAB ANIM SCI, V34, P169
  34. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  35. SQUIRES PM, 1992, J REPROD FERTIL, V95, P791
  36. Takimoto-Ohnishi E, 2005, MOL ENDOCRINOL, V19, P1361, DOI 10.1210/me.2004-0158
  37. Tower CL, 2010, REPRODUCTION, V140, P931, DOI 10.1530/REP-10-0307
  38. van den Hooven EH, 2012, ENVIRON HEALTH PERSP, V120, P1753, DOI 10.1289/ehp.1204918
  39. Veras MM, 2008, BIOL REPROD, V79, P578, DOI 10.1095/biolreprod.108.069591
  40. Veras MM, 2010, J TOXICOL ENV HEAL B, V13, P1, DOI 10.1080/10937401003673800
  41. World Health Organization, 2005, AIR QUAL GUID GLOB U, P31
  42. Xia Y, 2002, J BIOL CHEM, V277, P24601, DOI 10.1074/jbc.M201369200
  43. Zanardo V, 2016, ITAL J PEDIATR, V42, DOI 10.1186/s13052-016-0284-1