Comparison of SpO(2) and heart rate values on Apple Watch and conventional commercial oximeters devices in patients with lung disease

Carregando...
Imagem de Miniatura
Citações na Scopus
46
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Citação
SCIENTIFIC REPORTS, v.11, n.1, article ID 18901, 7p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lung diseases have high mortality and morbidity, with an important impact on quality of life. Hypoxemic patients are advised to use oxygen therapy to prolong their survival, but high oxygen saturation (SpO(2)) levels can also have negative effects. Pulse oximeters are the most common way to assess oxygen levels and guide medical treatment. This study aims to assess whether wearable devices can provide precise SpO(2) measurements when compared to commercial pulse oximeters. This is a cross-section study with 100 patients with chronic obstructive pulmonary disease and interstitial lung disease from an outpatient pneumology clinic. SpO(2) and heart rate data were collected with an Apple Watch Series 6 (Apple) and compared to two commercial pulse oximeters. The Bland-Altman method and interclass correlation coefficient were used to compare their values. We observed strong positive correlations between the Apple Watch device and commercial oximeters when evaluating heart rate measurements (r = 0.995, p < 0.001) and oximetry measurements (r = 0.81, p < 0.001). There was no statistical difference in the evaluation of skin color, wrist circumference, presence of wrist hair, and enamel nail for SpO(2) and heart rate measurements in Apple Watch or commercial oximeter devices (p > 0.05). Apple Watch 6 is a reliable way to obtain heart rate and SpO(2) in patients with lung diseases in a controlled environment.
Palavras-chave
Referências
  1. AGUSTI AGN, 1991, AM REV RESPIR DIS, V143, P219, DOI 10.1164/ajrccm/143.2.219
  2. Alexander JC, 2017, J CLIN MONIT COMPUT, V31, P825, DOI 10.1007/s10877-016-9889-6
  3. [Anonymous], 1999, CHEST, V116, P521
  4. Bell EC, 2017, EUR RESPIR REV, V26, DOI 10.1183/16000617.0080-2016
  5. Buekers J, 2019, JMIR MHEALTH UHEALTH, V7, DOI 10.2196/12866
  6. Caulfield BM, 2013, QJM-INT J MED, V106, P703, DOI 10.1093/qjmed/hct114
  7. Choi Y., 2017, SENSORS SWITZERLAND, V17, P1
  8. Dalbak LG, 2015, SCAND J PRIM HEALTH, V33, P305, DOI 10.3109/02813432.2015.1117283
  9. Deutsch PA, 2006, J CLIN SLEEP MED, V2, P145
  10. Dooley Erin E, 2017, JMIR Mhealth Uhealth, V5, pe34, DOI 10.2196/mhealth.7043
  11. Faverio P, 2019, INT J MED SCI, V16, P967, DOI 10.7150/ijms.32752
  12. Frank HA, 2017, WORK, V56, P475, DOI 10.3233/WOR-172513
  13. Gadre SK., 2018, MED US, V97
  14. Gonzalez S, 2015, NEUROCOMPUTING, V167, P52, DOI 10.1016/j.neucom.2015.01.082
  15. Greiwe J, 2020, CURR ALLERGY ASTHM R, V20, DOI 10.1007/s11882-020-00927-3
  16. Hernandez-Silveira M, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2014-006606
  17. Irigoyen MC, 2016, CURR HYPERTENS REP, V18, DOI 10.1007/s11906-016-0642-9
  18. Jubran A, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-0984-8
  19. Kochanek K. D., 2017, MORTALITY US 2016, V293
  20. Lin Z., 2017, P ANN INT IEEE EMBS, P803
  21. Nitzan M, 2014, MED DEVICES-EVID RES, V7, P231, DOI 10.2147/MDER.S47319
  22. Pilling J, 1999, CHEST, V116, P314, DOI 10.1378/chest.116.2.314
  23. Siemieniuk RAC., 2018, BMJ-BRIT MED J, V363, P1, DOI [10.1136/bmj.k4169, DOI 10.1136/bmj.k4169]
  24. Sobolewski Piotr, 2019, Reumatologia (Warsaw), V57, P221, DOI 10.5114/reum.2019.87619
  25. Soriano JB, 2017, LANCET RESP MED, V5, P691, DOI 10.1016/S2213-2600(17)30293-X
  26. Tayfur I, 2019, AM J EMERG MED, V37, P1527, DOI 10.1016/j.ajem.2019.03.021
  27. Todd B, 2021, AM J NURS, V121, P16, DOI 10.1097/01.NAJ.0000742448.35686.f9
  28. Tomlinson S, 2018, TELEMED E-HEALTH, V24, P527, DOI 10.1089/tmj.2017.0166
  29. Yang HJ, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14020184
  30. Zhu ZW, 2005, RESP MED, V99, P1386, DOI 10.1016/j.rmed.2005.03.010