Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorNUNEZ, Freddy A.
dc.contributor.authorCASTRO, Ana C. H.
dc.contributor.authorOLIVEIRA, Vivian L. de
dc.contributor.authorLIMA, Ariane C.
dc.contributor.authorOLIVEIRA, Jamille R.
dc.contributor.authorMEDEIROS, Giuliana X. de
dc.contributor.authorSASAHARA, Greyce L.
dc.contributor.authorSANTOS, Keity S.
dc.contributor.authorLANFREDI, Alexandre J. C.
dc.contributor.authorALVES, Wendel A.
dc.date.accessioned2023-04-14T17:21:56Z
dc.date.available2023-04-14T17:21:56Z
dc.date.issued2023
dc.description.abstractEven after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexWoS
dc.description.sponsorshipFAPESP [2017/02317-2]
dc.description.sponsorshipCNPq [465389/2014-7, 304389/2019-6, 407951/2021-0]
dc.description.sponsorshipCAPES [88881.504639/2020-01]
dc.description.sponsorshipNational Institute of Science and Technology in Bioanalytics [2014/50867-3]
dc.identifier.citationACS BIOMATERIALS SCIENCE & ENGINEERING, v.9, n.1, p.458-473, 2023
dc.identifier.doi10.1021/acsbiomaterials.2c00509
dc.identifier.issn2373-9878
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/52856
dc.language.isoeng
dc.publisherAMER CHEMICAL SOCeng
dc.relation.ispartofAcs Biomaterials Science & Engineering
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright AMER CHEMICAL SOCeng
dc.subjectseroprevalenceeng
dc.subjectCOVID-19eng
dc.subjectSARS-CoV-2eng
dc.subjectelectrochemical immunosensorseng
dc.subjectzinc oxideeng
dc.subjectserological diagnosiseng
dc.subjectimmunosurveillanceeng
dc.subjectCoronaVaceng
dc.subject.otherzno nanorodseng
dc.subject.otherimpedimetric biosensoreng
dc.subject.otherappropriate useeng
dc.subject.otherthin-filmseng
dc.subject.othernanoparticleseng
dc.subject.otherxpseng
dc.subject.otherphotoluminescenceeng
dc.subject.othergrowtheng
dc.subject.othernanostructureeng
dc.subject.othervalidationeng
dc.subject.wosMaterials Science, Biomaterialseng
dc.titleElectrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individualseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalNUNEZ, Freddy A.:Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil
hcfmusp.author.externalCASTRO, Ana C. H.:Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil
hcfmusp.author.externalOLIVEIRA, Vivian L. de:Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil
hcfmusp.author.externalLANFREDI, Alexandre J. C.:Univ Fed ABC, Ctr Engn, Modelagem & Ciencias Sociais Aplicadas, BR-09210580 Santo Andre, SP, Brazil
hcfmusp.author.externalALVES, Wendel A.:Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil
hcfmusp.citation.scopus15
hcfmusp.contributor.author-fmusphcARIANE CESARIO LIMA
hcfmusp.contributor.author-fmusphcJAMILLE RAMOS DE OLIVEIRA
hcfmusp.contributor.author-fmusphcGIULIANA XAVIER DE MEDEIROS
hcfmusp.contributor.author-fmusphcGREYCE LURI SASAHARA
hcfmusp.contributor.author-fmusphcKEITY SOUZA SANTOS
hcfmusp.description.beginpage458
hcfmusp.description.endpage473
hcfmusp.description.issue1
hcfmusp.description.volume9
hcfmusp.origemWOS
hcfmusp.origem.pubmed36048716
hcfmusp.origem.scopus2-s2.0-85137858125
hcfmusp.origem.wosWOS:000862813500001
hcfmusp.publisher.cityWASHINGTONeng
hcfmusp.publisher.countryUSAeng
hcfmusp.relation.referenceAhmad R, 2016, RSC ADV, V6, P54836, DOI 10.1039/c6ra09731feng
hcfmusp.relation.referenceAl-Fandi MG, 2018, SENSOR REV, V38, P326, DOI 10.1108/SR-06-2017-0117eng
hcfmusp.relation.referenceAl-Gaashani R, 2013, CERAM INT, V39, P2283, DOI 10.1016/j.ceramint.2012.08.075eng
hcfmusp.relation.referenceAlafeef M, 2020, ACS NANO, V14, P17028, DOI 10.1021/acsnano.0c06392eng
hcfmusp.relation.referenceAydin EB, 2021, ACS BIOMATER SCI ENG, V7, P3874, DOI 10.1021/acsbiomaterials.1c00580eng
hcfmusp.relation.referenceBarbosa H. P., 2021, ZINC OXIDE MULTIFUNC, V55, P251eng
hcfmusp.relation.referenceBasto-Abreu A, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28232-9eng
hcfmusp.relation.referenceBatra N, 2014, THIN SOLID FILMS, V562, P612, DOI 10.1016/j.tsf.2014.04.045eng
hcfmusp.relation.referenceBiswas S, 2022, ANAL CHEM, V94, P3013, DOI 10.1021/acs.analchem.1c05538eng
hcfmusp.relation.referenceBlack K, 2010, CHEM VAPOR DEPOS, V16, P106, DOI 10.1002/cvde.200906831eng
hcfmusp.relation.referenceBrodin P, 2021, NAT MED, V27, P28, DOI 10.1038/s41591-020-01202-8eng
hcfmusp.relation.referenceInguanta R, 2013, J APPL ELECTROCHEM, V43, P199, DOI 10.1007/s10800-012-0514-1eng
hcfmusp.relation.referenceIsrar MQ, 2010, THIN SOLID FILMS, V519, P1106, DOI 10.1016/j.tsf.2010.08.052eng
hcfmusp.relation.referenceJanardhanan JA, 2022, ANAL CHEM, V94, P7584, DOI 10.1021/acs.analchem.2c00497eng
hcfmusp.relation.referenceJang Y, 2012, J NANOSCI NANOTECHNO, V12, P5173, DOI 10.1166/jnn.2012.6361eng
hcfmusp.relation.referenceJara A, 2021, NEW ENGL J MED, V385, P875, DOI 10.1056/NEJMoa2107715eng
hcfmusp.relation.referenceJiang M, 2022, ANAL CHIM ACTA, V1208, DOI 10.1016/j.aca.2022.339830eng
hcfmusp.relation.referenceJindal K, 2012, BIOSENS BIOELECTRON, V38, P11, DOI 10.1016/j.bios.2012.03.043eng
hcfmusp.relation.referenceKaramese M, 2022, J MED VIROL, V94, P173, DOI 10.1002/jmv.27289eng
hcfmusp.relation.referenceKehrer M, 2019, PLASMA PROCESS POLYM, V16, DOI 10.1002/ppap.201800160eng
hcfmusp.relation.referenceKlochko NP, 2019, SOL ENERGY, V184, P230, DOI 10.1016/j.solener.2019.04.002eng
hcfmusp.relation.referenceMartinez-Cuazitl A, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99529-weng
hcfmusp.relation.referenceKoike K, 2014, JPN J APPL PHYS, V53, DOI 10.7567/JJAP.53.05FF04eng
hcfmusp.relation.referenceKolodziejczak-Radzimska A, 2014, MATERIALS, V7, P2833, DOI 10.3390/ma7042833eng
hcfmusp.relation.referenceKumar M., 2014, J MAT SCI ENG, V2, P18, DOI 10.12691/AJMSE-2-2-2eng
hcfmusp.relation.referenceLalwani P, 2021, INT J INFECT DIS, V110, P141, DOI 10.1016/j.ijid.2021.07.017eng
hcfmusp.relation.referenceLayqah LA, 2019, MICROCHIM ACTA, V186, DOI 10.1007/s00604-019-3345-5eng
hcfmusp.relation.referenceLi JX, 2022, NAT MED, V28, P401, DOI 10.1038/s41591-021-01677-zeng
hcfmusp.relation.referenceLister AS, 2005, SEP SCI TECHNOL-SER, V6, P191eng
hcfmusp.relation.referenceLiu AR, 2017, ANAL CHIM ACTA, V973, P82, DOI 10.1016/j.aca.2017.03.048eng
hcfmusp.relation.referenceLiu PP, 2021, ACS OMEGA, V6, P9667, DOI 10.1021/acsomega.1c00253eng
hcfmusp.relation.referenceLombardi A, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.657711eng
hcfmusp.relation.referenceMartins BR, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12060657eng
hcfmusp.relation.referenceMahshid SS, 2021, BIOSENS BIOELECTRON, V176, DOI 10.1016/j.bios.2020.112905eng
hcfmusp.relation.referenceMARUYAMA T, 1992, J MATER SCI LETT, V11, P170, DOI 10.1007/BF00724682eng
hcfmusp.relation.referenceMcPeak KM, 2011, LANGMUIR, V27, P3672, DOI 10.1021/la105147ueng
hcfmusp.relation.referenceMedeiros GX, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.812126eng
hcfmusp.relation.referenceMitra S, 2012, J MATER CHEM, V22, P24145, DOI 10.1039/c2jm35013keng
hcfmusp.relation.referenceMolaakbari E, 2014, ANALYST, V139, P4356, DOI 10.1039/c4an00138aeng
hcfmusp.relation.referenceMukaka MM, 2012, MALAWI MED J, V24, P69eng
hcfmusp.relation.referenceMwankemwa B. S., 2022, RESULTS MATH, V14eng
hcfmusp.relation.referencePalomera N, 2011, J NANOSCI NANOTECHNO, V11, P6683, DOI 10.1166/jnn.2011.4248eng
hcfmusp.relation.referenceRidhuan NS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32127-5eng
hcfmusp.relation.referenceParihar A, 2020, ACS APPL BIO MATER, V3, P7326, DOI 10.1021/acsabm.0c01083eng
hcfmusp.relation.referencePark J, 2014, SENSOR ACTUAT B-CHEM, V200, P173, DOI 10.1016/j.snb.2014.03.001eng
hcfmusp.relation.referencePatella B, 2022, MATERIALS, V15, DOI 10.3390/ma15030713eng
hcfmusp.relation.referencePewsner D, 2004, BMJ-BRIT MED J, V329, P209, DOI 10.1136/bmj.329.7459.209eng
hcfmusp.relation.referencePhuruangrat A, 2021, OPTIK, V226, DOI 10.1016/j.ijleo.2020.165949eng
hcfmusp.relation.referencePollard AJ, 2021, NAT REV IMMUNOL, V21, P83, DOI 10.1038/s41577-020-00479-7eng
hcfmusp.relation.referencePramanik A, 2021, NANOSCALE ADV, V3, DOI 10.1039/d0na01007ceng
hcfmusp.relation.referenceQi P, 2013, BIOSENS BIOELECTRON, V39, P282, DOI 10.1016/j.bios.2012.07.078eng
hcfmusp.relation.referenceQu JX, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12040433eng
hcfmusp.relation.referenceRavindran R, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254367eng
hcfmusp.relation.referenceRodrigues J, 2020, APPL SURF SCI, V527, DOI 10.1016/j.apsusc.2020.146813eng
hcfmusp.relation.referenceda Silva SJR, 2020, ACS INFECT DIS, V6, P2319, DOI 10.1021/acsinfecdis.0c00274eng
hcfmusp.relation.referenceRostami A, 2021, CLIN MICROBIOL INFEC, V27, P331, DOI 10.1016/j.cmi.2020.10.020eng
hcfmusp.relation.referenceRushworth JV, 2014, BIOSENS BIOELECTRON, V56, P83, DOI 10.1016/j.bios.2013.12.036eng
hcfmusp.relation.referenceSaaedi A, 2016, PHYSICA E, V79, P113, DOI 10.1016/j.physe.2015.12.002eng
hcfmusp.relation.referenceSbrockey NM, 2004, III-VS REV, V17, P23, DOI 10.1016/S0961-1290(04)00735-5eng
hcfmusp.relation.referenceSchober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864eng
hcfmusp.relation.referenceSethuraman N, 2020, JAMA-J AM MED ASSOC, V323, P2249, DOI 10.1001/jama.2020.8259eng
hcfmusp.relation.referenceSeyahi E, 2021, RHEUMATOL INT, V41, P1429, DOI 10.1007/s00296-021-04910-7eng
hcfmusp.relation.referenceShetti NP, 2019, BIOSENS BIOELECTRON, V141, DOI 10.1016/j.bios.2019.111417eng
hcfmusp.relation.referenceViter R, 2014, IEEE SENS J, V14, P2028, DOI 10.1109/JSEN.2014.2309277eng
hcfmusp.relation.referenceSiddegowda KS, 2020, ELECTROANAL, V32, P2183, DOI 10.1002/elan.202000010eng
hcfmusp.relation.referenceSouza JS, 2016, J MATER CHEM A, V4, P944, DOI 10.1039/c5ta06646heng
hcfmusp.relation.referenceSoysal A., 2021, HUM VACC IMMUNOTHER, P17eng
hcfmusp.relation.referenceStamatatos L, 2021, SCIENCE, V372, P1413, DOI 10.1126/science.abg9175eng
hcfmusp.relation.referenceTabatabaei MK, 2020, IET NANOBIOTECHNOL, V14, P126, DOI 10.1049/iet-nbt.2018.5165eng
hcfmusp.relation.referenceTak M, 2014, BIOSENS BIOELECTRON, V59, P200, DOI 10.1016/j.bios.2014.03.036eng
hcfmusp.relation.referenceTereshchenko A., 2017, BIOSENS BIOELECTRON, P92eng
hcfmusp.relation.referenceTrevethan R, 2017, FRONT PUBLIC HEALTH, V5, DOI 10.3389/fpubh.2017.00307eng
hcfmusp.relation.referenceVabbina PK, 2015, BIOSENS BIOELECTRON, V63, P124, DOI 10.1016/j.bios.2014.07.026eng
hcfmusp.relation.referenceVanaparthy Rachana, 2021, Infez Med, V29, P328, DOI 10.53854/liim-2903-3eng
hcfmusp.relation.referenceWang CY, 2012, TALANTA, V94, P263, DOI 10.1016/j.talanta.2012.03.037eng
hcfmusp.relation.referenceViter R, 2019, SENSOR ACTUAT B-CHEM, V285, P601, DOI 10.1016/j.snb.2019.01.054eng
hcfmusp.relation.referenceWang J, 2006, ANAL ELECTROCHEMISTReng
hcfmusp.relation.referenceWang XM, 2021, J ELECTRON MATER, V50, P4954, DOI 10.1007/s11664-021-08958-weng
hcfmusp.relation.referenceWang ZJ, 2021, NATURE, V595, P426, DOI 10.1038/s41586-021-03696-9eng
hcfmusp.relation.referenceWojnarowicz J, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10061086eng
hcfmusp.relation.referenceWorld Health Organization, WHO COR COVID 19 DASeng
hcfmusp.relation.referenceWright P F, 1993, Rev Sci Tech, V12, P435eng
hcfmusp.relation.referenceWu M, 2022, LANCET, V399, P715, DOI 10.1016/S0140-6736(22)00092-7eng
hcfmusp.relation.referenceWu ZW, 2017, SUPERLATTICE MICROST, V107, P38, DOI 10.1016/j.spmi.2017.04.016eng
hcfmusp.relation.referenceCerqueira-Silva T, 2022, LANCET INFECT DIS, V22, P791, DOI 10.1016/S1473-3099(22)00140-2eng
hcfmusp.relation.referenceYadav S, 2021, ACS APPL BIO MATER, V4, P2974, DOI 10.1021/acsabm.1c00102eng
hcfmusp.relation.referenceYakoh A, 2021, BIOSENS BIOELECTRON, V176, DOI 10.1016/j.bios.2020.112912eng
hcfmusp.relation.referenceYan XD, 2008, CRYST GROWTH DES, V8, P2406, DOI 10.1021/cg7012599eng
hcfmusp.relation.referenceYang T, 2017, BIOSENS BIOELECTRON, V89, P538, DOI 10.1016/j.bios.2016.03.025eng
hcfmusp.relation.referenceZhan FQ, 2018, ACS SUSTAIN CHEM ENG, V6, P7789, DOI 10.1021/acssuschemeng.8b00776eng
hcfmusp.relation.referenceZhang ZH, 2021, BIOSENS BIOELECTRON, V181, DOI 10.1016/j.bios.2021.113134eng
hcfmusp.relation.referenceZhao SJ, 2022, ACS SENSORS, V7, P1740, DOI 10.1021/acssensors.2c00518eng
hcfmusp.relation.referenceZhu XL, 2007, BIOSENS BIOELECTRON, V22, P1600, DOI 10.1016/j.bios.2006.07.007eng
hcfmusp.relation.referenceZia T. ul H., 2021, COLLOID SURFACE A, V630eng
hcfmusp.relation.referenceZou KH, 2007, CIRCULATION, V115, P654, DOI 10.1161/CIRCULATIONAHA.105.594929eng
hcfmusp.relation.referenceChang TH, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121342eng
hcfmusp.relation.referenceZucolotto V., 2020, FRONT SENS, V3, DOI 10.3389/FSENS.2020.00003eng
hcfmusp.relation.referenceChen YX, 2008, MATER LETT, V62, P2369, DOI 10.1016/j.matlet.2007.12.004eng
hcfmusp.relation.referenceChoi MS, 2021, CERAM INT, V47, P14621, DOI 10.1016/j.ceramint.2021.02.045eng
hcfmusp.relation.referenceCollie S, 2022, NEW ENGL J MED, V386, P494, DOI 10.1056/NEJMc2119270eng
hcfmusp.relation.referenceDac Dien N., 2019, ADV MATER SCI, V4, P1, DOI 10.15761/AMS.1000147eng
hcfmusp.relation.referenceDai ZH, 2009, BIOSENS BIOELECTRON, V24, P1286, DOI 10.1016/j.bios.2008.07.047eng
hcfmusp.relation.referenceDas J, 2010, PHYSICA B, V405, P2492, DOI 10.1016/j.physb.2010.03.020eng
hcfmusp.relation.referenceDas SK, 2012, GREEN CHEM, V14, P1322, DOI 10.1039/c2gc16676ceng
hcfmusp.relation.referencede Almeida RM, 2020, CHEMPHYSCHEM, V21, P476, DOI 10.1002/cphc.201901171eng
hcfmusp.relation.referenceDitte Kristina, 2021, ACS Biomater Sci Eng, DOI 10.1021/acsbiomaterials.1c00727eng
hcfmusp.relation.referenceDong SY, 2017, SENSOR ACTUAT B-CHEM, V251, P650, DOI 10.1016/j.snb.2017.05.047eng
hcfmusp.relation.referenceElgrishi N, 2018, J CHEM EDUC, V95, P197, DOI 10.1021/acs.jchemed.7b00361eng
hcfmusp.relation.referenceEllmer K, 2000, J PHYS D APPL PHYS, V33, pR17, DOI 10.1088/0022-3727/33/4/201eng
hcfmusp.relation.referenceFerrag C., 2020, FRONT SENS, V1, P583822, DOI [DOI 10.3389/FSENS.2020.583822, 10.3389/FSENS.2020.583822]eng
hcfmusp.relation.referenceFortunato E, 2009, APPL PHYS A-MATER, V96, P197, DOI [10.1007/s00339-009-5086-5, 10.1007/s00339-009-50865]eng
hcfmusp.relation.referenceFrey A, 1998, J IMMUNOL METHODS, V221, P35, DOI 10.1016/S0022-1759(98)00170-7eng
hcfmusp.relation.referenceFunari R, 2020, BIOSENS BIOELECTRON, V169, DOI 10.1016/j.bios.2020.112578eng
hcfmusp.relation.referenceGasparotto G, 2017, MAT SCI ENG C-MATER, V76, P1240, DOI 10.1016/j.msec.2017.02.031eng
hcfmusp.relation.referenceHajian-Tilaki K, 2013, CASP J INTERN MED, V4, P627eng
hcfmusp.relation.referenceHernandez-Paredes J, 2008, J MOL STRUCT, V875, P295, DOI 10.1016/j.molstruc.2007.04.039eng
hcfmusp.relation.referenceHitchings MDT, 2021, LANCET REG HEALTH-AM, V1, DOI 10.1016/j.lana.2021.100025eng
hcfmusp.relation.referenceHou XM, 2012, CRYSTENGCOMM, V14, P5158, DOI 10.1039/c2ce25188deng
hcfmusp.relation.referenceHsu YF, 2008, ADV FUNCT MATER, V18, P1020, DOI 10.1002/adfm.200701083eng
hcfmusp.relation.referenceHuang MH, 2001, SCIENCE, V292, P1897, DOI 10.1126/science.1060367eng
hcfmusp.relation.referenceHuang Y, 2020, ACTA PHARMACOL SIN, V41, P1141, DOI 10.1038/s41401-020-0485-4eng
hcfmusp.scopus.lastupdate2024-05-19
relation.isAuthorOfPublicationc0150fd1-b321-4aed-9a83-0af259bf3890
relation.isAuthorOfPublicationf8238763-1c02-4c77-9f28-eeb893e05377
relation.isAuthorOfPublicationc732d335-0e98-4c78-bca1-dc52902d5a13
relation.isAuthorOfPublication49b50c00-33f4-4135-a6ac-72653a443874
relation.isAuthorOfPublicationf2c0963f-151d-42a5-9e89-32531d8ae50c
relation.isAuthorOfPublication.latestForDiscoveryc0150fd1-b321-4aed-9a83-0af259bf3890
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_NUNEZ_Electrochemical_Immunosensors_Based_on_Zinc_Oxide_Nanorods_for_2023.PDF
Tamanho:
6.91 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)