Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, v.23, n.15, p.1599-1608, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Methods Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction30% were consecutively randomly assigned into two groups: functional electrical stimulation (n=15; 542 years) and control (n=15; 492 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10Hz frequency, 150ms pulse width and 70 mA intensity for 60minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of<20 mA. Results Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Conclusion Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure.
Palavras-chave
Heart failure, electrical stimulation, sympathetic nerve activity, vasoconstriction, exercise tolerance
Referências
  1. Alves MJNN, 2012, HYPERTENSION, V60, P669, DOI 10.1161/HYPERTENSIONAHA.112.195776
  2. Alves MJNN, 2007, CLIN AUTON RES, V17, P364, DOI 10.1007/s10286-007-0448-6
  3. Antunes-Correa LM, 2012, EUR J PREV CARDIOL, V19, P822, DOI 10.1177/1741826711414626
  4. Barretto ACP, 2009, INT J CARDIOL, V135, P302, DOI 10.1016/j.ijcard.2008.03.056
  5. Bittner V, 1999, AM HEART J, V138, P593, DOI 10.1016/S0002-8703(99)70166-3
  6. Bocchi EA, 2009, ARQ BRAS CARDIOL, V93, P1
  7. BROWN MD, 1976, PFLUG ARCH EUR J PHY, V361, P241, DOI 10.1007/BF00587288
  8. Carvalho VO, 2009, ARQ BRAS CARDIOL, V93, P39, DOI 10.1590/S0066-782X2009000700008
  9. Clark AL, 1996, J AM COLL CARDIOL, V28, P1092, DOI 10.1016/S0735-1097(96)00323-3
  10. COHN JN, 1984, NEW ENGL J MED, V311, P819, DOI 10.1056/NEJM198409273111303
  11. CORCORAN PJ, 1991, WESTERN J MED, V154, P536
  12. Deley G, 2005, EUR J CARDIOV PREV R, V12, P226, DOI 10.1097/00149831-200506000-00007
  13. Deley G, 2008, AM J PHYS MED REHAB, V87, P502, DOI 10.1097/PHM.0b013e318174e29c
  14. DELIUS W, 1972, ACTA PHYSIOL SCAND, V84, P82, DOI 10.1111/j.1748-1716.1972.tb05158.x
  15. Dobsak P, 2006, CIRC J, V70, P75, DOI 10.1253/circj.70.75
  16. Dobsak P, 2006, INT HEART J, V47, P441, DOI 10.1536/ihj.47.441
  17. Fraga R, 2007, EUR J HEART FAIL, V9, P630, DOI 10.1016/j.ejheart.2007.03.003
  18. FRANCIS GS, 1993, CIRCULATION, V87, P40
  19. Gomes-Santos IL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098012
  20. Hambrecht R, 1998, CIRCULATION, V98, P2709
  21. Harris S, 2003, EUR HEART J, V24, P871, DOI 10.1016/S0195-668X(02)00822-9
  22. HASKING GJ, 1986, CIRCULATION, V73, P615
  23. Labrunee M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079438
  24. LEIMBACH WN, 1986, CIRCULATION, V73, P913
  25. LIPKIN DP, 1986, BRIT MED J, V292, P653
  26. McMurray JJV, 2005, LANCET, V365, P1877, DOI 10.1016/S0140-6736(05)66621-4
  27. MULLER E A, 1970, Archives of Physical Medicine and Rehabilitation, V51, P449
  28. Negrao CE, 2001, AM J PHYSIOL-HEART C, V280, pH1286
  29. Nuhr MJ, 2004, EUR HEART J, V25, P136, DOI 10.1016/j.ehj.2003.09.027
  30. O'Connor CM, 2009, JAMA-J AM MED ASSOC, V301, P1439, DOI 10.1001/jama.2009.454
  31. Parissis J, 2015, EUR J PREV CARDIOL, V22, P831, DOI 10.1177/2047487314540546
  32. PETTE D, 1992, REV PHYSIOL BIOCH P, V120, P115, DOI 10.1007/BFb0036123
  33. Pette D, 1999, MUSCLE NERVE, V22, P666, DOI 10.1002/(SICI)1097-4598(199906)22:6<666::AID-MUS3>3.0.CO;2-Z
  34. Quittan M, 1999, ARTIF ORGANS, V23, P432, DOI 10.1046/j.1525-1594.1999.06372.x
  35. Roveda F, 2003, J AM COLL CARDIOL, V42, P854, DOI 10.1016/S0735-1097(03)00831-3
  36. SALMONS S, 1978, J ANAT, V127, P17
  37. Sandri M, 2016, EUR J PREV CARDIOL, V23, P349, DOI 10.1177/2047487315588391
  38. Thompson PD, 2003, CIRCULATION, V107, P3109, DOI 10.1161/01.CIR.0000075572.40158.77
  39. Zucker IH, 2012, HEART FAIL CLIN, V8, P87, DOI 10.1016/j.hfc.2011.08.007