Combined Exercise Training Promotes More Benefits on Cardiovascular Autonomic Modulation in Ovariectomized Rats Than Isolated Aerobic or Resistance Training

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
DOVE MEDICAL PRESS LTD
Autores
COSTA-SANTOS, Nicolas Da
COSTA, Gabrielly Minguta Santos
DOS-SANTOS, Adriano
RIBEIRO, Thayna Fabiana
FREITAS, Sarah Cristina Ferreira
CAPERUTO, Erico
ANGELIS, Katia De
SCAPINI, Katia Bilhar
Citação
DIABETES METABOLIC SYNDROME AND OBESITY, v.16, p.1903-1913, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Cardiovascular risk increase after ovarian deprivation has been extensively demonstrated by our research group through cardiovascular autonomic analysis. Interventions involving different types of exercises, such as resistance exercises or combined exercises (aerobic and resistance) have been widely recommended to prevent or minimize neuromuscular decline in postmenopausal women, which is aggravated by a sedentary lifestyle. Experimentally, the cardiovascular effects of resistance or combined training, as well as comparison between aerobic, resistance, and combined training, in ovariectomized animals are scarce. Purpose: In this study, we hypothesized that the combination of aerobic and resistance training may be more effective in preventing muscle mass loss, as well as improving cardiovascular autonomic modulation and baroreflex sensitivity, than aerobic or resistance training individually in ovariectomized rats. Animals and Methods: Female rats were divided into 5 groups: sedentary (C); ovariectomized (Ovx); trained ovariectomized submitted to aerobic training (OvxAT); resistance training (OvxRT); combined training (OvxCT). Exercise training lasted 8 weeks, with the combined group alternating between aerobic training and resistance training every other day. At the end of the study, glycemia and insulin tolerance were evaluated. Arterial pressure (AP) was directly recorded. Baroreflex sensitivity was assessed by heart rate response to changes in arterial pressure. Cardiovascular autonomic modulation was evaluated by spectral analysis. Results: Combined training was the only training regime that increased baroreflex sensitivity for tachycardic response and reduced all systolic blood pressure variability parameters. Furthermore, all animals submitted to exercise training on a treadmill (OvxAT and OvxCT) presented lower systolic, diastolic, and mean pressure, as well as improvements in the autonomic modulation for the heart. Conclusion: Combined training showed to be more effective than isolated aerobic and resistance training, mixing the isolated benefits of each modality. It was the only modality able to increase baroreflex sensitivity to tachycardic responses, reduce arterial pressure and all parameters of vascular sympathetic modulation.
Palavras-chave
combined exercise training, resistance exercise training, aerobic exercise training, ovarian hormone deprivation, cardiovascular autonomic modulation, baroreflex sensitivity
Referências
  1. Angelis De K, 2004, REV SOCIEDADE CARDIO, V13, P1, DOI [10.1126/science.150.3699.971, DOI 10.1126/SCIENCE.150.3699.971]
  2. Bernardes N, 2008, EXERCISE TRAINING IM
  3. Bertagnolli M, 2006, J HYPERTENS, V24, P2437, DOI 10.1097/01.hjh.0000251905.08547.17
  4. BONORA E, 1989, J CLIN ENDOCR METAB, V68, P374, DOI 10.1210/jcem-68-2-374
  5. Brito JO, 2008, BRAZ J MED BIOL RES, V41, P804, DOI 10.1590/S0100-879X2008005000030
  6. Brito-Monzani JD, 2021, EXP GERONTOL, V145, DOI 10.1016/j.exger.2020.111181
  7. Chodzko-Zajko WJ, 2009, MED SCI SPORT EXER, V41, P1510, DOI 10.1249/MSS.0b013e3181a0c95c
  8. Conti FF, 2015, AM J PHYSIOL-REG I, V309, pR1532, DOI 10.1152/ajpregu.00076.2015
  9. da Palma RK, 2016, J APPL PHYSIOL, V121, P1032, DOI 10.1152/japplphysiol.00130.2016
  10. de Jong M, 2020, DIABETES CARE, V43, P2050, DOI 10.2337/dc19-2363
  11. De Maria B, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.01478
  12. Ferreira M, 2020, BIOL SEX DIFFER, V11, DOI 10.1186/s13293-020-00290-y
  13. Flores LJ, 2010, MENOPAUSE, V17, P712, DOI 10.1097/gme.0b013e3181cdebc9
  14. Flues K, 2010, MATURITAS, V65, P267, DOI 10.1016/j.maturitas.2009.11.007
  15. Frontoni S, 2005, NUTR METAB CARDIOVAS, V15, P441, DOI 10.1016/j.numecd.2005.06.010
  16. Guyenet PG, 2006, NAT REV NEUROSCI, V7, P335, DOI 10.1038/nrn1902
  17. Higa KT, 2002, AM J PHYSIOL-REG I, V282, pR537, DOI 10.1152/ajpregu.00806.2000
  18. HOPF HB, 1995, ANESTHESIOLOGY, V82, P609, DOI 10.1097/00000542-199503000-00002
  19. Irigoyen MC, 2005, HYPERTENSION, V46, P998, DOI 10.1161/01.HYP.0000176238.90688.6b
  20. Joaquim LF, 2005, REV BRAS HIPERT, V12, P36
  21. Lingvay I, 2022, LANCET, V399, P394, DOI 10.1016/S0140-6736(21)01919-X
  22. Machi JF, 2016, CLIN INTERV AGING, V11, P341, DOI 10.2147/CIA.S88441
  23. Michelini LC, 1999, ANN NY ACAD SCI, V897, P198, DOI 10.1111/j.1749-6632.1999.tb07892.x
  24. Michelini LC, 2009, EXP PHYSIOL, V94, P947, DOI 10.1113/expphysiol.2009.047449
  25. Michelini LC, 2007, CLIN EXP PHARMACOL P, V34, P369, DOI 10.1111/j.1440-1681.2007.04589.x
  26. Montano N, 2009, NEUROSCI BIOBEHAV R, V33, P71, DOI 10.1016/j.neubiorev.2008.07.006
  27. Myers J, 1998, ANN INTERN MED, V129, P286, DOI 10.7326/0003-4819-129-4-199808150-00004
  28. NEGRAO CE, 1992, J APPL PHYSIOL, V72, P1749, DOI 10.1152/jappl.1992.72.5.1749
  29. POMERANZ B, 1985, AM J PHYSIOL, V248, pH151, DOI 10.1152/ajpheart.1985.248.1.H151
  30. Porta A, 2013, AUTON NEUROSCI-BASIC, V178, P1, DOI 10.1016/j.autneu.2013.05.006
  31. Quinteiro H, 2015, MENOPAUSE, V22, P534, DOI [10.1097/GME.0000000000000344, 10.1097/gme.0000000000000344]
  32. Rodrigues B, 2007, CARDIOVASC DIABETOL, V6, DOI 10.1186/1475-2840-6-38
  33. Saladini F, 2016, HIGH BLOOD PRESS CAR, V23, P237, DOI 10.1007/s40292-016-0162-3
  34. Sanches IC, 2014, INT J SPORTS MED, V35, P323, DOI 10.1055/s-0033-1351254
  35. Sanches IC, 2015, J APPL PHYSIOL, V119, P656, DOI 10.1152/japplphysiol.00883.2014
  36. Sanches IC, 2012, MENOPAUSE, V19, P562, DOI 10.1097/gme.0b013e3182358c9c
  37. Santos CR, 2018, J NEUROENDOCRINOL, V30, DOI 10.1111/jne.12601
  38. Shimojo GL, 2015, BRAZ J MED BIOL RES, V48, P523, DOI 10.1590/1414-431X20154387
  39. Shimojo GL, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01471
  40. Stanisic J, 2019, APPL PHYSIOL NUTR ME, V44, P1219, DOI 10.1139/apnm-2018-0785
  41. Stunes AK, 2020, BONE, V132, DOI 10.1016/j.bone.2019.115193
  42. Suarez-Roca H, 2021, COMPR PHYSIOL, V11, P1373, DOI 10.1002/cphy.c190038
  43. Takezawa Hiroto, 1994, Frontiers of Medical and Biological Engineering, V6, P131
  44. Takezawa Hiroto, 1994, American Journal of Physiology, V267, pR1250
  45. Tsao CW, 2022, CIRCULATION, V145, pE153, DOI 10.1161/CIR.0000000000001052
  46. Veras-Silva Acacio Salvador, 1997, American Journal of Physiology, V273, pH2627
  47. Visseren FLJ, 2021, EUR HEART J, V42, P3227, DOI 10.1093/eurheartj/ehab484
  48. Vogel B, 2021, LANCET, V397, P2385, DOI 10.1016/S0140-6736(21)00684-X
  49. Whelton Paul K, 2018, J Am Soc Hypertens, V12, DOI [10.1161/HYP.0000000000000065, 10.1016/j.jash.2018.06.010]
  50. World Health Organization, CARD DIS CVDS
  51. Zaki Moushira Erfan, 2014, J Osteoporos, V2014, P702589, DOI 10.1155/2014/702589