Sepsis: Future role of omics in diagnosis and therapy

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
bookPart
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
Barbeiro, H. V.; Barbeiro, D. F.; Soriano, F. G.. Sepsis: Future role of omics in diagnosis and therapy. In: . PRECISION MEDICINE FOR INVESTIGATORS, PRACTITIONERS AND PROVIDERS: ELSEVIER, 2019. p.281-289.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Protocoled interventions for sepsis have dominated the guidelines of international societies. Treatment has to start quickly. In sepsis as in other emergencies, it has been demonstrated that time since emergency room admission and antibiotic prescription determine clinical evolution. Precision medicine-based sepsis management faces a specific problem. In addition to being accurate, diagnosis has to be fast. In a matter of hours, a patient may have died from an infection that has turned into sepsis. Techniques for proteomics, genomics, metabolomics, and all omics are indeed becoming more accurate and fast. Yet time to receive laboratory results is the limiting factor for implementing such advances in clinical practice. In this chapter we review recent data about omics, and how they can help for better diagnosis and treatment. © 2020 Elsevier Inc. All rights reserved.
Palavras-chave
Bacteria, Cytokine, DNA, Infection, Metabolomics, mRNA, Organ dysfunction, Protein, Proteomics, Sepsis, Transcriptomics
Referências
  1. Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., Antonelli, M., Ferrer, R., Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016 (2017) Crit. Care Med., 45 (3), pp. 486-552
  2. Scherag, A., Schöneweck, F., Kesselmeier, M., Taudien, S., Platzer, M., Felder, M., Genetic factors of the disease course after sepsis: A genome-wide study for 28Day mortality (2016) EBioMedicine, 12, pp. 239-246
  3. Scicluna, B.P., van Vught, L.A., Zwinderman, A.H., Wiewel, M.A., Davenport, E.E., Burnham, K.L., Classification of patients with sepsis according to blood genomic endotype: A prospective cohort study (2017) Lancet Respir. Med., 5 (10), pp. 816-826
  4. Prucha, M., Ruryk, A., Boriss, H., Möller, E., Zazula, R., Herold, I., Expression profiling: Toward an application in sepsis diagnostics (2004) Shock, 22 (1), pp. 29-33
  5. Sutherland, A.M., Russell, J.A., Issues with polymorphism analysis in sepsis (2005) Clin. Infect. Dis., 41, pp. S396-S402
  6. Sørensen, T.I., Nielsen, G.G., Andersen, P.K., Teasdale, T.W., Genetic and environmental influences on premature death in adult adoptees (1988) N. Engl. J. Med., 318 (12), pp. 727-732
  7. Stüber, F., Petersen, M., Bokelmann, F., Schade, U., A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis (1996) Crit. Care Med., 24 (3), pp. 381-384
  8. Texereau, J., Pene, F., Chiche, J.D., Rousseau, C., Mira, J.P., Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis (2004) Crit. Care Med., 32 (5), pp. S313-S319
  9. Fang, X.M., Schröder, S., Hoeft, A., Stüber, F., Comparison of two polymorphisms of the interleukin-1 gene family: Interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis (1999) Crit. Care Med., 27 (7), pp. 1330-1334
  10. Hubacek, J.A., Stüber, F., Fröhlich, D., Book, M., Wetegrove, S., Ritter, M., Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: Gender-specific genetic predisposition to sepsis (2001) Crit. Care Med., 29 (3), pp. 557-561
  11. Feterowski, C., Emmanuilidis, K., Miethke, T., Gerauer, K., Rump, M., Ulm, K., Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis (2003) Immunology, 109 (3), pp. 426-431
  12. Medvedev, A.E., Lentschat, A., Kuhns, D.B., Blanco, J.C., Salkowski, C., Zhang, S., Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections (2003) J. Exp. Med., 198 (4), pp. 521-531
  13. Sutherland, A.M., Walley, K.R., Russell, J.A., Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults (2005) Crit. Care Med., 33 (3), pp. 638-644
  14. Arcaroli, J., Silva, E., Maloney, J.P., He, Q., Svetkauskaite, D., Murphy, J.R., Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis (2006) Am. J. Respir. Crit. Care Med., 173 (12), pp. 1335-1341
  15. Khor, C.C., Vannberg, F.O., Chapman, S.J., Walley, A., Aucan, C., Loke, H., Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus (2007) Genes Immun., 8 (7), pp. 570-576
  16. Mansur, A., Liese, B., Steinau, M., Ghadimi, M., Bergmann, I., Tzvetkov, M., The CD14 rs2569190 TT genotype is associated with an improved 30-day survival in patients with sepsis: A prospective observational cohort study (2015) PLoS One, 10 (5), p. e0127761
  17. Gocek, E., Moulas, A.N., Studzinski, G.P., Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells (2014) Crit. Rev. Clin. Lab. Sci., 51 (3), pp. 125-137
  18. Rautanen, A., Mills, T.C., Gordon, A.C., Hutton, P., Steffens, M., Nuamah, R., Genome-wide association study of survival from sepsis due to pneumonia: An observational cohort study (2015) Lancet Respir. Med., 3 (1), pp. 53-60
  19. Hermans, P.W., Hibberd, M.L., Booy, R., Daramola, O., Hazelzet, J.A., de Groot, R., 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group (1999) Lancet, 354 (9178), pp. 556-560
  20. Phillips, J.M., Goodman, J.I., Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation (2008) Toxicol. Sci., 104 (1), pp. 86-99
  21. Esteller, M., Epigenetics provides a new generation of oncogenes and tumour-suppressor genes (2007) Br. J. Cancer, 96, pp. R26-R30
  22. Dong, X., Weng, Z., The correlation between histone modifications and gene expression (2013) Epigenomics, 5 (2), pp. 113-116
  23. Bierne, H., Cossart, P., When bacteria target the nucleus: The emerging family of nucleomodulins (2012) Cell Microbiol., 14 (5), pp. 622-633
  24. Stephens, K.E., Miaskowski, C.A., Levine, J.D., Pullinger, C.R., Aouizerat, B.E., Epigenetic regulation and measurement of epigenetic changes (2013) Biol. Res. Nurs., 15 (4), pp. 373-381
  25. Leliefeld, P.H., Wessels, C.M., Leenen, L.P., Koenderman, L., Pillay, J., The role of neutrophils in immune dysfunction during severe inflammation (2016) Crit. Care, 20, p. 73
  26. Peck-Palmer, O.M., Unsinger, J., Chang, K.C., McDonough, J.S., Perlman, H., McDunn, J.E., Modulation of the Bcl-2 family blocks sepsis-induced depletion of dendritic cells and macrophages (2009) Shock, 31 (4), pp. 359-366
  27. Cobb, J.P., Laramie, J.M., Stormo, G.D., Morrissey, J.J., Shannon, W.D., Qiu, Y., Sepsis gene expression profiling: Murine splenic compared with hepatic responses determined by using complementary DNA microarrays (2002) Crit. Care Med., 30 (12), pp. 2711-2721
  28. Boomer, J.S., To, K., Chang, K.C., Takasu, O., Osborne, D.F., Walton, A.H., Immunosuppression in patients who die of sepsis and multiple organ failure (2011) JAMA, 306 (23), pp. 2594-2605
  29. Xiao, W., Mindrinos, M.N., Seok, J., Cuschieri, J., Cuenca, A.G., Gao, H., A genomic storm in critically injured humans (2011) J. Exp. Med., 208 (13), pp. 2581-2590
  30. Hotchkiss, R.S., Karl, I.E., The pathophysiology and treatment of sepsis (2003) N. Engl. J. Med., 348 (2), pp. 138-150
  31. Cazalis, M.A., Lepape, A., Venet, F., Frager, F., Mougin, B., Vallin, H., Early and dynamic changes in gene expression in septic shock patients: A genome-wide approach (2014) Intensive Care Med. Exp., 2 (1), p. 20
  32. Leentjens, J., Kox, M., van der Hoeven, J.G., Netea, M.G., Pickkers, P., Immunotherapy for the adjunctive treatment of sepsis: From immunosuppression to immunostimulation. Time for a paradigm change? (2013) Am. J. Respir. Crit. Care Med., 187 (12), pp. 1287-1293
  33. Calvano, J.E., Bowers, D.J., Coyle, S.M., Macor, M., Reddell, M.T., Kumar, A., Response to systemic endotoxemia among humans bearing polymorphisms of the Toll-like receptor 4 (hTLR4) (2006) Clin. Immunol., 121 (2), pp. 186-190
  34. Talwar, S., Munson, P.J., Barb, J., Fiuza, C., Cintron, A.P., Logun, C., Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans (2006) Physiol. Genom., 25 (2), pp. 203-215
  35. Johnson, S.B., Lissauer, M., Bochicchio, G.V., Moore, R., Cross, A.S., Scalea, T.M., Gene expression profiles differentiate between sterile SIRS and early sepsis (2007) Ann. Surg., 245 (4), pp. 611-621
  36. Sonna, L.A., Hawkins, L., Lissauer, M.E., Maldeis, P., Towns, M., Johnson, S.B., Core temperature correlates with expression of selected stress and immunomodulatory genes in febrile patients with sepsis and noninfectious SIRS (2010) Cell Stress Chaperones, 15 (1), pp. 55-66
  37. Seok, J., Warren, H.S., Cuenca, A.G., Mindrinos, M.N., Baker, H.V., Xu, W., Genomic responses in mouse models poorly mimic human inflammatory diseases (2013) Proc. Natl. Acad. Sci. U.S.A, 110 (9), pp. 3507-3512
  38. Sweeney, T.E., Shidham, A., Wong, H.R., Khatri, P., A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set (2015) Sci. Transl. Med., 7 (287), p. 287ra71
  39. Průcha, M., Zazula, R., Russwurm, S., Sepsis diagnostics in the era of “omics” technologies (2018) Prague Med. Rep., 119 (1), pp. 9-29
  40. Tang, F., Liu, W., Zhang, F., Xin, Z.T., Wei, M.T., Zhang, P.H., IL-12 RB1 genetic variants contribute to human susceptibility to severe acute respiratory syndrome infection among Chinese (2008) PLoS One, 3 (5), p. e2183
  41. Yu, S.L., Chen, H.W., Yang, P.C., Peck, K., Tsai, M.H., Chen, J.J., Differential gene expression in gram-negative and gram-positive sepsis (2004) Am. J. Respir. Crit. Care Med., 169 (10), pp. 1135-1143
  42. Grealy, R., White, M., Stordeur, P., Kelleher, D., Doherty, D.G., McManus, R., Characterising cytokine gene expression signatures in patients with severe sepsis (2013) Mediat. Inflamm., 2013, p. 164246
  43. Hinrichs, C., Kotsch, K., Buchwald, S., Habicher, M., Saak, N., Gerlach, H., Perioperative gene expression analysis for prediction of postoperative sepsis (2010) Clin. Chem., 56 (4), pp. 613-622
  44. Parnell, G.P., McLean, A.S., Booth, D.R., Armstrong, N.J., Nalos, M., Huang, S.J., A distinct influenza infection signature in the blood transcriptome of patients with severe community-acquired pneumonia (2012) Crit. Care, 16 (4), p. R157
  45. Davenport, E.E., Burnham, K.L., Radhakrishnan, J., Humburg, P., Hutton, P., Mills, T.C., Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study (2016) Lancet Respir. Med., 4 (4), pp. 259-271
  46. Sweeney, T.E., Haynes, W.A., Vallania, F., Ioannidis, J.P., Khatri, P., Methods to increase reproducibility in differential gene expression via meta-analysis (2017) Nucleic Acids Res., 45 (1), p. e1
  47. Sweeney, T.E., Khatri, P., Benchmarking sepsis gene expression diagnostics using public data (2017) Crit. Care Med., 45 (1), pp. 1-10
  48. Paugam-Burtz, C., Albuquerque, M., Baron, G., Bert, F., Voitot, H., Delefosse, D., Plasma proteome to look for diagnostic biomarkers of early bacterial sepsis after liver transplantation: A preliminary study (2010) Anesthesiology, 112 (4), pp. 926-935
  49. Kasthuri, R.S., Wroblewski, M., Jilma, B., Key, N.S., Nelsestuen, G.L., Potential biomarkers of an exaggerated response to endotoxemia (2007) Biomarkers, 12 (3), pp. 287-302
  50. Malmström, E., Kilsgård, O., Hauri, S., Smeds, E., Herwald, H., Malmström, L., Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics (2016) Nat. Commun., 7, p. 10261
  51. Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., A tissue-specific atlas of mouse protein phosphorylation and expression (2010) Cell, 143 (7), pp. 1174-1189
  52. Sjöholm, K., Kilsgård, O., Teleman, J., Happonen, L., Malmström, L., Malmström, J., Targeted proteomics and absolute protein quantification for the construction of a stoichiometric host-pathogen surface density model (2017) Mol. Cell. Proteom., 16, pp. S29-S41
  53. Kosmides, A.K., Kamisoglu, K., Calvano, S.E., Corbett, S.A., Androulakis, I.P., Metabolomic fingerprinting: Challenges and opportunities (2013) Crit. Rev. Biomed. Eng., 41 (3), pp. 205-221
  54. Serkova, N.J., Standiford, T.J., Stringer, K.A., The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses (2011) Am. J. Respir. Crit. Care Med., 184 (6), pp. 647-655
  55. Patti, G.J., Separation strategies for untargeted metabolomics (2011) J. Sep. Sci, 34 (24), pp. 3460-3469
  56. Kauppi, A.M., Edin, A., Ziegler, I., Mölling, P., Sjöstedt, A., Gylfe, Å., Metabolites in blood for prediction of bacteremic sepsis in the emergency room (2016) PLoS One, 11 (1), p. e0147670
  57. Ferrario, M., Cambiaghi, A., Brunelli, L., Giordano, S., Caironi, P., Guatteri, L., Mortality prediction in patients with severe septic shock: A pilot study using a target metabolomics approach (2016) Sci. Rep., 6, p. 20391
  58. Garcia-Simon, M., Morales, J.M., Modesto-Alapont, V., Gonzalez-Marrachelli, V., Vento-Rehues, R., Jorda-Miñana, A., Prognosis biomarkers of severe sepsis and septic shock by 1H NMR urine metabolomics in the intensive care unit (2015) PLoS One, 10 (11), p. e0140993
  59. Su, L., Huang, Y., Zhu, Y., Xia, L., Wang, R., Xiao, K., Discrimination of sepsis stage metabolic profiles with an LC/MS-MS-based metabolomics approach (2014) BMJ Open Respir. Res., 1 (1), p. e000056
  60. Berkhout, D.J.C., van Keulen, B.J., Niemarkt, H.J., Bessem, J.R., de Boode, W.P., Cossey, V., Late-onset sepsis in preterm infants can be detected preclinically by fecal volatile organic compound analysis: A prospective, multicenter cohort study (2019) Clin. Infect. Dis., 68 (1), pp. 70-77
  61. Mickiewicz, B., Thompson, G.C., Blackwood, J., Jenne, C.N., Winston, B.W., Vogel, H.J., Biomarker phenotype for early diagnosis and triage of sepsis to the pediatric intensive care unit (2018) Sci. Rep., 8 (1), p. 16606
  62. Bos, L.D., Sterk, P.J., Schultz, M.J., Volatile metabolites of pathogens: A systematic review (2013) PLoS Pathog., 9 (5), p. e1003311
  63. Bos, L.D., Martin-Loeches, I., Kastelijn, J.B., Gili, G., Espasa, M., Povoa, P., The volatile metabolic fingerprint of ventilator-associated pneumonia (2014) Intensive Care Med., 40 (5), pp. 761-762
  64. Douglas, I.S., New diagnostic methods for pneumonia in the ICU (2016) Curr. Opin. Infect. Dis., 29 (2), pp. 197-204
  65. Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., An integrated catalog of reference genes in the human gut microbiome (2014) Nat. Biotechnol., 32 (8), pp. 834-841
  66. Sender, R., Fuchs, S., Milo, R., Revised estimates for the number of human and bacteria cells in the body (2016) PLoS Biol., 14 (8), p. e1002533
  67. Feng, Q., Chen, W.D., Wang, Y.D., Gut microbiota: An integral moderator in health and disease (2018) Front. Microbiol., 9, p. 151
  68. Dickson, R.P., The microbiome and critical illness (2016) Lancet Respir. Med., 4 (1), pp. 59-72
  69. Lankelma, J.M., van Vught, L.A., Belzer, C., Schultz, M.J., van der Poll, T., de Vos, W.M., Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: A pilot study (2017) Intensive Care Med., 43 (1), pp. 59-68
  70. Yeh, A., Rogers, M.B., Firek, B., Neal, M.D., Zuckerbraun, B.S., Morowitz, M.J., Dysbiosis across multiple body sites in critically ill adult surgical patients (2016) Shock, 46 (6), pp. 649-654
  71. Ojima, M., Motooka, D., Shimizu, K., Gotoh, K., Shintani, A., Yoshiya, K., Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients (2016) Dig. Dis. Sci., 61 (6), pp. 1628-1634
  72. Dickson, R.P., Singer, B.H., Newstead, M.W., Falkowski, N.R., Erb-Downward, J.R., Standiford, T.J., Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome (2016) Nat. Microbiol., 1 (10), p. 16113
  73. Andrade-Oliveira, V., Amano, M.T., Correa-Costa, M., Castoldi, A., Felizardo, R.J., de Almeida, D.C., Gut bacteria products prevent AKI induced by ischemia-reperfusion (2015) J. Am. Soc. Nephrol., 26 (8), pp. 1877-1888
  74. Schieber, A.M., Lee, Y.M., Chang, M.W., Leblanc, M., Collins, B., Downes, M., Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling (2015) Science, 350 (6260), pp. 558-563
  75. Caballero, S., Kim, S., Carter, R.A., Leiner, I.M., Sušac, B., Miller, L., Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium (2017) Cell Host Microbe, 21 (5), pp. 592-602. , e4
  76. Buffie, C.G., Bucci, V., Stein, R.R., McKenney, P.T., Ling, L., Gobourne, A., Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile (2015) Nature, 517 (7533), pp. 205-208
  77. Gosalbes, M.J., Vázquez-Castellanos, J.F., Angebault, C., Woerther, P.L., Ruppé, E., Ferrús, M.L., Carriage of enterobacteria producing extended-spectrum β-Lactamases and composition of the gut microbiota in an amerindian community (2016) Antimicrob. Agents Chemother, 60 (1), pp. 507-514
  78. Pamer, E.G., Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens (2016) Science, 352 (6285), pp. 535-538