The Impact of Sonothrombolysis on Left Ventricular Diastolic Function and Left Atrial Mechanics Preventing Left Atrial Remodeling in Patients With ST Elevation Acute Myocardial Infarction

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MOSBY-ELSEVIER
Citação
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, v.36, n.5, p.504-513, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The diagnostic ultrasound-guided high mechanical index impulses during an intravenous micro -bubble infusion (sonothrombolysis) improve myocardial perfusion in acute ST segment elevation myocardial infarction, but its effect on left ventricular diastolic dysfunction (DD), left atrial (LA) mechanics and remodeling is unknown. We assessed the effect of sonothrombolysis on DD grade and LA mechanics. Methods: One hundred patients (59 +/- 10 years; 34% women) were randomized to receive either high mechan-ical index impulses plus percutaneous coronary intervention (PCI) (therapy group) or PCI only (control group) (n = 50 in each group). Diastolic dysfunction grade and LA mechanics were assessed immediately before and after PCI and at 48 to 72 hours, 1 month, and 6 months of follow-up. Diastolic dysfunction grades were clas-sified as grades I, II, and III. The LA mechanics was obtained by two-dimensional speckle-tracking echocardiography-derived global longitudinal strain (GLS).Results: As follow-up time progressed, increased DD grade was observed more frequently in the control group than in the therapy group at 1 month and 6 months of follow-up (all P < .05). The LA-GLS values were incre-mentally higher in the therapy group when compared with the control group at 48 to 72 hours, 24.0% +/- 7.3% in the therapy group versus 19.6% +/- 7.2% in the control group, P = .005; at 1 month, 25.3% +/- 6.3% in the ther-apy group versus 21.5% +/- 8.3% in the control group, P = .020; and at 6 months, 26.2% +/- 8.7% in the therapy group versus 21.6% +/- 8.5% in the control group, P = .015. The therapy group was less likely to experience LA remodeling (odds ratio, 2.91 [1.10-7.73]; P = .03). LA-GLS was the sole predictor of LA remodeling (odds ratio, 0.79 [0.67-0.94]; P = .006).Conclusion: Sonothrombolysis is associated with better DD grade and LA mechanics, reducing LA remodel-ing. (J Am Soc Echocardiogr 2023;36:504-13.)
Palavras-chave
Acute myocardial infarction, Sonothrombolysis, Left ventricular diastolic dysfunction, Left atrial strain, Left atrial remodeling
Referências
  1. Aggarwal S, 2018, J AM SOC ECHOCARDIOG, V31, P674, DOI 10.1016/j.echo.2018.01.009
  2. Aguiar MOD, 2020, CIRC-CARDIOVASC IMAG, V13, DOI 10.1161/CIRCIMAGING.119.009536
  3. Antman Elliott M, 2004, J Am Coll Cardiol, V44, P671, DOI 10.1016/j.jacc.2004.07.002
  4. Antoni ML, 2011, J AM SOC ECHOCARDIOG, V24, P1126, DOI 10.1016/j.echo.2011.06.017
  5. Barbieri A, 2008, ECHOCARDIOGR-J CARD, V25, P575, DOI 10.1111/j.1540-8175.2008.00679.x
  6. Bazzino O, 2011, AM HEART J, V162, DOI 10.1016/j.ahj.2011.07.029
  7. Bello D, 2011, MAGN RESON IMAGING, V29, P50, DOI 10.1016/j.mri.2010.03.031
  8. Bianco CM, 2020, JACC-CARDIOVASC IMAG, V13, P258, DOI 10.1016/j.jcmg.2018.12.035
  9. Carluccio Erberto, 2018, Circ Cardiovasc Imaging, V11, pe007696, DOI 10.1161/CIRCIMAGING.118.007696
  10. Cerisano G, 2001, Ital Heart J, V2, P13
  11. Cheitlin MD, 2003, CIRCULATION, V108, P1146, DOI 10.1161/01.CIR.0000073597.57414.A9
  12. Chen XH, 2017, INT J CARDIOL, V228, P886, DOI 10.1016/j.ijcard.2016.11.146
  13. Cho JH, 2012, J KOREAN MED SCI, V27, P236, DOI 10.3346/jkms.2012.27.3.236
  14. CHRISTIAN TF, 1992, CIRCULATION, V86, P81, DOI 10.1161/01.CIR.86.1.81
  15. Corban MT, 2020, INT J CARDIOL, V300, P27, DOI 10.1016/j.ijcard.2019.09.043
  16. Dogan C, 2013, CARDIOVASC ULTRASOUN, V11, DOI 10.1186/1476-7120-11-24
  17. Dokainish H, 2014, ECHOCARDIOGR-J CARD, V31, P569, DOI 10.1111/echo.12452
  18. Fernandes RM, 2019, J ECHOCARDIOGR, V17, P138, DOI 10.1007/s12574-018-0403-7
  19. Haji K, 2019, JACC-CARDIOVASC IMAG, V12, P1093, DOI 10.1016/j.jcmg.2018.11.009
  20. Kobusiak-Prokopowicz M, 2001, Pol Arch Med Wewn, V106, P557
  21. Lang RM, 2015, EUR HEART J-CARD IMG, V16, P233, DOI 10.1093/ehjci/jev014
  22. Levy WC, 2001, AM J CARDIOL, V87, P955, DOI 10.1016/S0002-9149(01)01428-X
  23. Mathias W, 2019, J AM COLL CARDIOL, V73, P2832, DOI 10.1016/j.jacc.2019.03.006
  24. Mathias W, 2016, J AM COLL CARDIOL, V67, P2506, DOI 10.1016/j.jacc.2016.03.542
  25. Nagueh SF, 2016, J AM SOC ECHOCARDIOG, V29, P277, DOI 10.1016/j.echo.2016.01.011
  26. Niccoli G, 2009, J AM COLL CARDIOL, V54, P281, DOI 10.1016/j.jacc.2009.03.054
  27. PASSAMANI E, 1985, NEW ENGL J MED, V312, P932
  28. Pollack CV, 2008, ANN EMERG MED, V51, P591, DOI 10.1016/j.annemergmed.2007.09.004
  29. Poulsen SH, 2001, CARDIOLOGY, V95, P190, DOI 10.1159/000047371
  30. Prasad SB, 2019, IJC HEART VASC, V24, DOI 10.1016/j.ijcha.2019.100407
  31. Reddy Yogesh N V, 2020, J Am Coll Cardiol, V76, P1051, DOI 10.1016/j.jacc.2020.07.009
  32. Reddy YNV, 2019, EUR J HEART FAIL, V21, P891, DOI 10.1002/ejhf.1464
  33. Reinstadler SJ, 2020, INT J CARDIOL, V301, P40, DOI 10.1016/j.ijcard.2019.10.051
  34. Roth GA, 2021, J AM COLL CARDIOL, V77, P1958, DOI 10.1016/j.jacc.2021.02.039
  35. Shao CL, 2015, BMC CARDIOVASC DISOR, V15, DOI 10.1186/s12872-015-0135-9
  36. Singh A, 2019, INT J CARDIOVAS IMAG, V35, P23, DOI 10.1007/s10554-018-1425-y
  37. Thomas L, 2019, J AM COLL CARDIOL, V73, P1961, DOI 10.1016/j.jacc.2019.01.059
  38. Thomas L, 2017, JACC-CARDIOVASC IMAG, V10, P66, DOI 10.1016/j.jcmg.2016.11.003
  39. Xie F, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0069780, 10.1371/journal.pone.0054773]
  40. Xie F, 2011, J AM SOC ECHOCARDIOG, V24, P1400, DOI 10.1016/j.echo.2011.09.007
  41. Xie F, 2009, CIRCULATION, V119, P1378, DOI 10.1161/CIRCULATIONAHA.108.825067
  42. Ye Z, 2020, J AM SOC ECHOCARDIOG, V33, P1490, DOI 10.1016/j.echo.2020.07.020
  43. Zhu J, 2013, CARDIOVASC J AFR, V24, P154, DOI 10.5830/CVJA-2013-011