Microsatellite loci cross-species transferability in Aedes fluviatilis (Diptera:Culicidae): a cost-effective approach for population genetics studies

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
MULTINI, Laura Cristina
MARRELLI, Mauro Toledo
WILKE, Andre Barretto Bruno
Citação
PARASITES & VECTORS, v.8, article ID 635, 4p, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Aedes fluviatilis is a neotropical mosquito species thought to be a potential vector of Yellow Fever viruses and can be infected with Plasmodium gallinaceum in laboratory. A better understanding of its genetic structure is very important to understand its epidemiologic potential and how it is responding to urbanization. The objective of this study was to survey the transferability of microsatellites loci developed for other Aedes to Ae. fluviatilis. Findings: We tested in Ae. fluviatilis 40 pairs of primers known to flank microsatellite regions in Aedes aegypti, Aedes albopictus and Aedes caspius, and found eight loci that amplified consistently. The number of alleles per locus ranged from 2 to 15, and the expected heterozygosity ranged from 0.09 to 0.85. Conclusions: We found that several microsatellite primers successfully transferred to Ae. fluviatilis. This finding opens avenues for cost-effective optimization of high-resolution population genetic tools.
Palavras-chave
Aedes fluviatilis, Microsatellite, Culicidae, Genetic structure
Referências
  1. Chambers EW, 2007, J HERED, V98, P202, DOI 10.1093/jhered/esm015
  2. Porretta D, 2006, MOL ECOL NOTES, V6, P880, DOI 10.1111/j.1471-8286.2006.01384.x
  3. Huber K, 2001, MOL ECOL NOTES, V1, P219, DOI 10.1046/j.1471-8278 .2001.00077.x
  4. Porretta D, 2005, MOL ECOL NOTES, V5, P48, DOI 10.1111/j.1471-8286.2004.00826.x
  5. Carlsson J, 2008, J HERED, V99, P616, DOI 10.1093/jhered/esn048
  6. Bello F, 2009, GENET MOL RES, V8, P1179, DOI 10.4238/vol8-3gmr652
  7. Edillo FE, 2007, J MED ENTOMOL, V44, P145, DOI 10.1603/0022-2585(2007)44[145:ASOBAM]2.0.CO;2
  8. Medeiros-Sousa AR, 2013, J AM MOSQUITO CONTR, V29, P275, DOI 10.2987/12-6304R.1
  9. Li B, 2013, GENETICS, V195, P563, DOI 10.1534/genetics.113.154161
  10. Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x
  11. Toth G, 2000, GENOME RES, V10, P967, DOI 10.1101/gr.10.7.967
  12. Moreira LA, 2009, CELL, V139, P1268, DOI 10.1016/j.cell.2009.11.042
  13. Beebe NW, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002361
  14. Belisario CJ, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0879-1
  15. Carvalho G.C., 2014, J VECTOR ECOL, V39, P146
  16. Ceretti W, 2015, J AM MOSQUITO CONTR, V31, P172, DOI 10.2987/14-6457R
  17. Consoli R.A.G.B., 1983, Memorias do Instituto Oswaldo Cruz, V78, P37
  18. DAVIS N. C., 1931, American Journal of Tropical Medicine, V11, P21
  19. de Camargo M V, 1983, Mem Inst Oswaldo Cruz, V78, P83
  20. Delatte H, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002111
  21. Excoffier L, 2005, EVOL BIOINFORM, V1, P47
  22. Monteiro FA, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0003167
  23. Samb B, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-188
  24. Wilke ABB, 2014, PARASITE VECTOR, V7, DOI 10.1186/s13071-014-0468-8
  25. Wilkerson RC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133602
  26. WRBU. Walter Reed Biosystematics Unit, 2013, SYST CAT CUL