Melittin induces in vitro death of Leishmania (Leishmania) infantum by triggering the cellular innate immune response

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
PEREIRA, Andreia Vieira
BARROS, Gustavo de
TEMPONE, Andre Gustavo
ORSI, Ricardo de Oliveira
SANTOS, Lucilene Delazari dos
CALVI, Sueli
FERREIRA JR., Rui Seabra
PIMENTA, Daniel Carvalho
BARRAVIERA, Benedito
Citação
JOURNAL OF VENOMOUS ANIMALS AND TOXINS INCLUDING TROPICAL DISEASES, v.22, article ID 1, 8p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Apis mellifera venom, which has already been recommended as an alternative anti-inflammatory treatment, may be also considered an important source of candidate molecules for biotechnological and biomedical uses, such as the treatment of parasitic diseases. Methods: Africanized honeybee venom from Apis mellifera was fractionated by RP-C18-HPLC and the obtained melittin was incubated with promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Cytotoxicity to mice peritoneal macrophages was evaluated through mitochondrial oxidative activity. The production of anti-and pro-inflammatory cytokines, NO and H2O2 by macrophages was determined. Results: Promastigotes and intracellular amastigotes were susceptible to melittin (IC50 28.3 mu g.mL(-1) and 1.4 mu g.mL(-1), respectively), but also showed mammalian cell cytotoxicity with an IC50 value of 5.7 mu g.mL(-1). Uninfected macrophages treated with melittin increased the production of IL-10, TNF-alpha, NO and H2O2. Infected melittin-treated macrophages increased IL-12 production, but decreased the levels of IL-10, TNF-alpha, NO and H2O2. Conclusions: The results showed that melittin acts in vitro against promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Furthermore, they can act indirectly on intracellular amastigotes through a macrophage immunomodulatory effect.
Palavras-chave
Melittin, Apis mellifera, Leishmania, Leishmaniasis, Peptides, Toxins, Antiparasitic, Cytokines
Referências
  1. Alvar J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035671
  2. Alberola J, 2004, ANTIMICROB AGENTS CH, V48, P641, DOI 10.1128/AAC.48.2.641-643.2004
  3. HernandezPando R, 1997, IMMUNOLOGY, V90, P607, DOI 10.1046/j.1365-2567.1997.00193.x
  4. Cezario GAG, 2011, MEM I OSWALDO CRUZ, V106, P573, DOI 10.1590/S0074-02762011000500010
  5. Tripathi P, 2007, FEMS IMMUNOL MED MIC, V51, P443, DOI 10.1111/j.1574-695X.2007.00329.x
  6. Adade CM, 2012, PARASITOLOGY, V139, P1444, DOI 10.1017/S0031182012000790
  7. Kwon YB, 2001, ACUPUNCTURE ELECTRO, V26, P59
  8. Sciani JM, 2010, PEPTIDES, V31, P1473, DOI 10.1016/j.peptides.2010.05.001
  9. Petricevich VL, 2000, TOXICON, V38, P1253, DOI 10.1016/S0041-0101(99)00227-5
  10. Mukbel RM, 2007, AM J TROP MED HYG, V76, P669
  11. Bradley JR, 2008, J PATHOL, V214, P149, DOI 10.1002/path.2287
  12. Reimao JQ, 2011, EXP PARASITOL, V128, P111, DOI 10.1016/j.exppara.2011.02.021
  13. GERZER R, 1988, THROMB RES, V52, P11, DOI 10.1002/cber.187901201117
  14. Belkaid Y, 2001, J EXP MED, V194, P1497, DOI 10.1084/jem.194.10.1497
  15. da Costa-Silva TA, 2015, J NAT PROD, V78, P653, DOI 10.1021/np500809a
  16. Robak T, 1998, EUR CYTOKINE NETW, V9, P145
  17. Jacobs T, 2003, ANTIMICROB AGENTS CH, V47, P607, DOI 10.1128/AAC.47.2.607-613.2003
  18. Kulkarni MM, 2009, J BIOL CHEM, V284, P15496, DOI 10.1074/jbc.M809079200
  19. Ansari NA, 2006, CLIN IMMUNOL, V119, P339, DOI 10.1016/j.clim.2006.01.017
  20. Tempone AG, 2008, TOXICON, V52, P13, DOI 10.1016/j.toxicon.2008.05.008
  21. Ferre R, 2009, BIOPHYS J, V96, P1815, DOI [10.1016/j.bpj.2008.11.053, 10.1016/j.bpj.2008.11053]
  22. PICK E, 1980, J IMMUNOL METHODS, V38, P161, DOI 10.1016/0022-1759(80)90340-3
  23. Moon DO, 2007, INT IMMUNOPHARMACOL, V7, P1092, DOI 10.1016/j.intimp.2007.04.005
  24. Klocek G, 2008, BIOCHEMISTRY-US, V47, P2841, DOI 10.1021/bi702258z
  25. Stromstedt AA, 2007, J COLLOID INTERF SCI, V311, P59, DOI 10.1016/j.jcis.2007.02.070
  26. Diaz-Achirica P, 1998, BIOCHEM J, V330, P453
  27. Watford WT, 2004, IMMUNOL REV, V202, P139, DOI 10.1111/j.0105-2896.2004.00211.x
  28. Passero LFD, 2008, PARASITOL RES, V102, P1025, DOI 10.1007/s00436-007-0871-6
  29. Maher S, 2006, BIOCHEM PHARMACOL, V71, P1289, DOI 10.1016/j.bcp.2006.01.012
  30. Santos LD, 2011, J VENOM ANIM TOXINS, V17, P364, DOI 10.1590/S1678-91992011000400003
  31. Perez-Santos JLM, 2001, PARASITE IMMUNOL, V23, P599, DOI 10.1046/j.1365-3024.2001.00421.x
  32. Allahverdiyev AM, 2013, EXP PARASITOL, V135, P55, DOI 10.1016/j.exppara.2013.06.001
  33. Bechinger B, 2006, BBA-BIOMEMBRANES, V1758, P1529, DOI 10.1016/j.bbamem.2006.07.001
  34. Ferreira ASSBS, 2013, TOXICON, V69, P50, DOI 10.1016/j.toxicon.2013.01.003
  35. Barros GAC, 2015, J VENOM ANIM TOXINS, V21, DOI 10.1186/s40409-015-0049-0
  36. Bogdan C, 2000, NITRIC OXIDE, P443
  37. Carter V, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003790
  38. Chen L. C., 2010, J NANOMATER, V2010, P1
  39. Coelho-Castelo AAM, 2009, MEDICINA RIBEIRAO PR, V42, P127
  40. Conlon JM, 2004, BBA-PROTEINS PROTEOM, V1696, P1, DOI 10.1016/j.bbapap.2003.09.004
  41. Cota GF, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001665
  42. Cummings HE, 2010, J BIOMED BIOTECHNOL, DOI 10.1155/2010/294389
  43. Ferreira RS, 2010, TOXICON, V56, P355, DOI 10.1016/j.toxicon.2010.03.023
  44. Lapara NJ, 2010, J INFLAMM-LOND, V7, DOI 10.1186/1476-9255-7-8
  45. Marques Nuno, 2007, Acta Med Port, V20, P291
  46. PICK E, 1981, J IMMUNOL METHODS, V46, P211, DOI 10.1016/0022-1759(81)90138-1
  47. Sundar S, 2015, EXPERT OPIN PHARMACO, V16, P237, DOI 10.1517/14656566.2015.973850
  48. TADA H, 1986, J IMMUNOL METHODS, V93, P157, DOI 10.1016/0022-1759(86)90183-3
  49. Verma S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010107
  50. Zar J. H., 2010, BIOSTAT ANAL, P944