Preventive and therapeutic moderate aerobic exercise programs convert atherosclerotic plaques into a more stable phenotype

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
CARDINOT, Themis M.
MORETTI, Ana I. S.
KRIEGER, Marta H.
BRUM, Patricia C.
Citação
LIFE SCIENCES, v.153, p.163-170, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The mechanisms by which exercise affects atherosclerotic plaque stability remain incompletely understood. We evaluated the effects of two training protocols on both atherosclerotic plaque structure and the signaling pathways involved in plaque rupture. Methods: Male low-density lipoprotein (LDL) receptor knockout mice were fed a high-fat, high-cholesterol diet (HFD). One group was subjected to moderate exercise using a treadmill for 14 weeks (preventive protocol). The other group started an exercise regimen after 16 weeks of the HFD (therapeutic group). Atherosclerotic plaques within the aorta were evaluated for lipid and collagen contents, as well as for inflammatory markers. Plasma cholesterol and cytokine levels were also determined. Results: The mice receiving a HFD developed hypercholesterolemia and atherosclerotic plaques within the aorta. The aortas from the animals in the preventive protocol exhibited smaller lipid cores and higher collagen content. These animals also exhibited lower CD40 expression within the plaques. The aortas of the mice in the therapeutic group exhibited higher collagen content, but no differences in either lipid core size or plaque size were noted. No differences in blood pressure, plasma cholesterol, cytokine levels, plaque size or metalloproteinase 9 expression were observed in the trained animals compared with the sedentary animals. Conclusion: Moderate aerobic exercise modified atherosclerotic plaque characteristics and converted the plaques into a more stable phenotype, increasing the collagen content in response to both exercise programs. Furthermore, moderate aerobic exercise reduced the animals' fat content and decreased the activity of the CD40-CD40L signaling pathway in the preventive group.
Palavras-chave
Atherosclerosis, Aerobic exercise, Plaque stability, High fat diet
Referências
  1. Matsumoto Y, 2010, CIRCULATION, V121, P759, DOI 10.1161/CIRCULATIONAHA.109.892224
  2. Wannamethee SG, 1998, LANCET, V351, P1603, DOI 10.1016/S0140-6736(97)12355-8
  3. Wang L, 2011, J APPL PHYSIOL, V111, P1335, DOI 10.1152/japplphysiol.00086.2011
  4. Souza HP, 2009, CLIN SCI, V116, P423, DOI 10.1042/CS20080155
  5. Schwartz SM, 2007, ARTERIOSCL THROM VAS, V27, P705, DOI 10.1161/01.ATV.0000261709.34878.20
  6. Kelly CR, 2014, AM J CARDIOL, V114, P376, DOI 10.1016/j.amjcard.2014.04.048
  7. Yi CX, 2012, PHYSIOL BEHAV, V106, P485, DOI 10.1016/j.physbeh.2012.03.021
  8. Napoli C, 2004, P NATL ACAD SCI USA, V101, P8797, DOI 10.1073/pnas.0402734101
  9. Naghavi M, 2003, CIRCULATION, V108, P1664, DOI 10.1161/01.CIR.0000087480.94275.97
  10. Thompson PD, 2003, CIRCULATION, V107, P3109, DOI 10.1161/01.CIR.0000075572.40158.77
  11. Garcia JAD, 2008, J CARDIOVASC PHARM, V51, P78, DOI 10.1097/FJC.0b013e31815c39d4
  12. Moreira ELG, 2013, NEUROSCI LETT, V541, P193, DOI 10.1016/j.neulet.2013.02.043
  13. Naghavi M, 2003, CIRCULATION, V108, P1772, DOI 10.1161/01.CIR.0000087481.55887.C9
  14. Szostak J, 2011, CLIN SCI, V121, P91, DOI 10.1042/CS20100520
  15. Schonbeck U, 2000, P NATL ACAD SCI USA, V97, P7458, DOI 10.1073/pnas.97.13.7458
  16. PAIGEN B, 1987, P NATL ACAD SCI USA, V84, P3763, DOI 10.1073/pnas.84.11.3763
  17. Rekhter MD, 2002, CARDIOVASC RES, V54, P36, DOI 10.1016/S0008-6363(01)00537-5
  18. Baar K, 2004, P NUTR SOC, V63, P269, DOI 10.1079/PNS2004334
  19. Tian J, 2014, J AM COLL CARDIOL, V64, P672, DOI 10.1016/j.jacc.2014.05.052
  20. Shon SM, 2011, ATHEROSCLEROSIS, V216, P67, DOI 10.1016/j.atherosclerosis.2011.01.036
  21. Bentzon JF, 2014, CIRC RES, V114, P1852, DOI 10.1161/CIRCRESAHA.114.302721
  22. Medeiros C, 2011, J CELL PHYSIOL, V226, P666, DOI 10.1002/jcp.22387
  23. Meilhac O, 2001, ARTERIOSCL THROM VAS, V21, P1681, DOI 10.1161/hq1001.097106
  24. Teodoro BG, 2012, J ATHEROSCLER THROMB, V19, P904
  25. Otsuka F, 2014, NAT REV CARDIOL, V11, P379, DOI 10.1038/nrcardio.2014.62
  26. Kasapis C, 2005, J AM COLL CARDIOL, V45, P1563, DOI 10.1016/j.jacc.2004.12.077
  27. GALIS ZS, 1994, J CLIN INVEST, V94, P2493, DOI 10.1172/JCI117619
  28. Shimada K, 2007, CIRC J, V71, P1147, DOI 10.1253/circj.71.1147
  29. DAVIES MJ, 1984, NEW ENGL J MED, V310, P1137, DOI 10.1056/NEJM198405033101801
  30. Niebauer J, 2003, AM J PHYSIOL-HEART C, V285, pH535, DOI 10.1152/ajpheart.00360.2001
  31. Okabe T, 2007, CARDIOVASC RES, V74, P537, DOI 10.1016/j.cardiores.2007.02.019
  32. Leon AS, 2001, MED SCI SPORT EXER, V33, pS502, DOI 10.1097/00005768-200106001-00021
  33. Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004
  34. RUBIN EM, 1991, NATURE, V353, P265, DOI 10.1038/353265a0
  35. Touati S, 2011, MED SCI SPORT EXER, V43, P398, DOI 10.1249/MSS.0b013e3181eeb12d
  36. Matsumoto A, 2013, INT J CARDIOL, V167, P1282, DOI 10.1016/j.ijcard.2012.03.172
  37. Langbein H, 2015, ATHEROSCLEROSIS SUPP, V18, P59, DOI 10.1016/j.atherosclerosissup.2015.02.010
  38. Boden WE, 2014, AM J MED, V127, P905, DOI 10.1016/j.amjmed.2014.05.007
  39. GLAGOV S, 1987, NEW ENGL J MED, V316, P1371, DOI 10.1056/NEJM198705283162204
  40. Hammett C. J., 2006, AM HEART J, V151, p[e367, e316]
  41. Hammett CJ, 2006, AM HEART J, V151, P367
  42. Leon A. S., 2001, MED SCI SPORTS EXERC, V33, pS528
  43. Libby P, 2003, AM J CARDIOL, V91, P4, DOI 10.1016/S0002-9149(02)03267-8
  44. Moustardas P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108240
  45. Nie P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097009