Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments

Carregando...
Imagem de Miniatura
Citações na Scopus
68
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN ONCOLOGY, v.6, article ID 127, 12p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Galectin-3 is a member of the beta-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1 alpha and NF-kappa B. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular galectin-3.
Palavras-chave
galectin-3, cell signaling, migration, angiogenesis, tumor microenvironment
Referências
  1. Ahmad N, 2004, J BIOL CHEM, V279, P10841, DOI 10.1074/jbc.M312834200
  2. Sano H, 2000, J IMMUNOL, V165, P2156
  3. Kadrofske MM, 1998, ARCH BIOCHEM BIOPHYS, V349, P7, DOI 10.1006/abbi.1997.0447
  4. Mourad-Zeidan AA, 2008, AM J PATHOL, V173, P1839, DOI 10.2353/ajpath.2008.080380
  5. Dumic J, 2000, CELL PHYSIOL BIOCHEM, V10, P149, DOI 10.1159/000016345
  6. Park GB, 2015, INT J ONCOL, V46, P185, DOI 10.3892/ijo.2014.2721
  7. SATO S, 1992, J BIOL CHEM, V267, P6983
  8. Davidson PJ, 2002, GLYCOBIOLOGY, V12, P329, DOI 10.1093/glycob/12.5.329
  9. Krzeminski M, 2011, BBA-GEN SUBJECTS, V1810, P150, DOI 10.1016/j.bbagen.2010.11.001
  10. Li SY, 2006, GLYCOBIOLOGY, V16, P612, DOI 10.1093/glycob/cwj089
  11. Lau KS, 2007, CELL, V129, P123, DOI 10.1016/j.cell.2007.01.049
  12. Sun W, 2015, MOL PHARMACEUT, V12, P4124, DOI 10.1021/acs.molpharmaceut.5b00568
  13. Seberger PJ, 1999, GLYCOBIOLOGY, V9, P235, DOI 10.1093/glycob/9.3.235
  14. Poirier O, 2001, DIABETES, V50, P1214, DOI 10.2337/diabetes.50.5.1214
  15. Guardia CMA, 2011, J CHEM INF MODEL, V51, P1918, DOI 10.1021/ci200180h
  16. Gao XG, 2014, ONCOTARGET, V5, P2077
  17. Thery C, 2001, J IMMUNOL, V166, P7309
  18. Patterson RJ, 2015, METHODS MOL BIOL, V1207, P431, DOI 10.1007/978-1-4939-1396-1_28
  19. Gaudin JC, 2000, BIOL CELL, V92, P49, DOI 10.1016/S0248-4900(00)88763-8
  20. Shekhar MPV, 2004, AM J PATHOL, V165, P1931, DOI 10.1016/S0002-9440(10)63245-2
  21. Demetriou M, 2001, NATURE, V409, P733, DOI 10.1038/35055582
  22. BARONDES SH, 1994, J BIOL CHEM, V269, P20807
  23. LOBSANOV YD, 1993, J BIOL CHEM, V268, P27034
  24. Arnoys EJ, 2015, METHODS MOL BIOL, V1207, P465, DOI 10.1007/978-1-4939-1396-1_30
  25. Shankar J, 2012, J PATHOL, V228, P56, DOI 10.1002/path.4041
  26. Menon S, 2011, BIOCHEM BIOPH RES CO, V410, P91, DOI 10.1016/j.bbrc.2011.05.112
  27. Boscher C, 2013, MOL BIOL CELL, V24, P2134, DOI 10.1091/mbc.E13-02-0095
  28. Lajoie P, 2009, J CELL BIOL, V185, P381, DOI 10.1083/jcb.200811059
  29. Nangia-Makker P, 2010, INT J CANCER, V127, P2530, DOI 10.1002/ijc.25254
  30. Mazurek N, 2000, J BIOL CHEM, V275, P36311, DOI 10.1074/jbc.M003831200
  31. Cui GH, 2015, MED ONCOL, V32, DOI 10.1007/s12032-015-0570-6
  32. Allenspach EJ, 2002, CANCER BIOL THER, V1, P466
  33. Hsu YL, 2013, CARCINOGENESIS, V34, P1370, DOI 10.1093/carcin/bgt040
  34. Partridge EA, 2004, SCIENCE, V306, P120, DOI 10.1126/science.1102109
  35. Boscher C, 2011, CURR OPIN CELL BIOL, V23, P383, DOI 10.1016/j.ceb.2011.05.001
  36. Nangia-Makker P, 2000, AM J PATHOL, V156, P899, DOI 10.1016/S0002-9440(10)64959-0
  37. Zheng DT, 2014, ONCOL REP, V32, P411, DOI 10.3892/or.2014.3170
  38. MOUTSATSOS IK, 1987, P NATL ACAD SCI USA, V84, P6452, DOI 10.1073/pnas.84.18.6452
  39. COWLES EA, 1990, J BIOL CHEM, V265, P17706
  40. Neder L, 2004, BRAIN PATHOL, V14, P399
  41. de Oliveira JT, 2011, INT J DEV BIOL, V55, P823, DOI 10.1387/ijdb.113359jt
  42. Gilmore TD, 2006, ONCOGENE, V25, P6680, DOI 10.1038/sj.onc.1209954
  43. Liu FT, 2002, BBA-GEN SUBJECTS, V1572, P263, DOI 10.1016/S0304-4165(02)00313-6
  44. Akahani S, 1997, CANCER RES, V57, P5272
  45. Menon RP, 1999, EUR J BIOCHEM, V264, P569, DOI 10.1046/j.1432-1327.1999.00671.x
  46. Tsay YG, 1999, EXP CELL RES, V252, P250, DOI 10.1006/excr.1999.4643
  47. Gabius HJ, 2004, CHEMBIOCHEM, V5, P740, DOI 10.1002/cbic.200300753
  48. Bergers G, 2003, NAT REV CANCER, V3, P401, DOI 10.1038/nrc1093
  49. Liu L, 2004, BIOCHEM J, V380, P31, DOI 10.1042/BJ20031300
  50. Yoshii T, 2002, J BIOL CHEM, V277, P6852, DOI 10.1074/jbc.M107668200
  51. Openo KP, 2000, EXP CELL RES, V255, P278, DOI 10.1006/excr.1999.4782
  52. Bridges E, 2011, FUTURE ONCOL, V7, P569, DOI [10.2217/fon.11.20, 10.2217/FON.11.20]
  53. Granovsky M, 2000, NAT MED, V6, P306
  54. Vokhmyanina OA, 2012, GLYCOBIOLOGY, V22, P1207, DOI 10.1093/glycob/cws079
  55. Dange MC, 2015, MOL CELL BIOCHEM, V404, P79, DOI 10.1007/s11010-015-2367-5
  56. LIAO DI, 1994, P NATL ACAD SCI USA, V91, P1428, DOI 10.1073/pnas.91.4.1428
  57. Kobayashi T, 2011, INT J CANCER, V129, P2775, DOI 10.1002/ijc.25946
  58. Kuklinski S, 1998, J NEUROCHEM, V70, P814
  59. Morris S, 2004, GLYCOBIOLOGY, V14, P293, DOI 10.1093/glycob/cwh029
  60. Elad-Sfadia G, 2004, J BIOL CHEM, V279, P34922, DOI 10.1074/jbc.M312697200
  61. Carvalho RS, 2014, CANCER BIOL THER, V15, P840, DOI 10.4161/cbt.28873
  62. Rabinovich GA, 2007, CURR OPIN STRUC BIOL, V17, P513, DOI 10.1016/j.sbi.2007.09.002
  63. Nabi IR, 2015, J CELL SCI, V128, P2213, DOI 10.1242/jcs.151159
  64. Fukumori T, 2006, CANCER RES, V66, P3114, DOI 10.1158/0008-5472.CAN-05-3750
  65. Thijssen VL, 2015, BBA-REV CANCER, V1855, P235, DOI 10.1016/j.bbcan.2015.03.003
  66. Wang L, 2016, BIOMED PHARMACOTHER, V78, P165, DOI 10.1016/j.biopha.2016.01.014
  67. Funasaka T, 2014, SEMIN CANCER BIOL, V27, P30, DOI 10.1016/j.semcancer.2014.03.004
  68. Levy R, 2010, MOL CANCER THER, V9, P2208, DOI 10.1158/1535-7163.MCT-10-0262
  69. Meyer A, 2013, UROL ONCOL-SEMIN ORI, V31, P74, DOI 10.1016/j.urolonc.2010.09.011
  70. Ruvolo PP, 2016, BBA-MOL CELL RES, V1863, P427, DOI 10.1016/j.bbamcr.2015.08.008
  71. Andre S, 2010, MOL PHARMACEUT, V7, P2270, DOI 10.1021/mp1002416
  72. Davidson PJ, 2006, GLYCOBIOLOGY, V16, P602, DOI 10.1093/glycob/cwj088
  73. Mori Y, 2015, J BIOL CHEM, V290, P26125, DOI 10.1074/jbc.M115.651489
  74. Park JW, 2001, NUCLEIC ACIDS RES, V29, P3595, DOI 10.1093/nar/29.17.3595
  75. Suzuki O, 2015, INT J ONCOL, V47, P2091, DOI 10.3892/ijo.2015.3211
  76. Kim EK, 2010, BBA-MOL BASIS DIS, V1802, P396, DOI 10.1016/j.bbadis.2009.12.009
  77. Machado CML, 2014, CANCER MED-US, V3, P201, DOI 10.1002/cam4.173
  78. Nieminen J, 2007, J BIOL CHEM, V282, P1374, DOI 10.1074/jbc.M604506200
  79. HUFLEJT ME, 1993, J BIOL CHEM, V268, P26712
  80. Saegusa J, 2008, J INVEST DERMATOL, V128, P2403, DOI 10.1038/jid.2008.119
  81. Baptiste TA, 2007, EXP CELL RES, V313, P652, DOI 10.1016/j.yexcr.2006.11.005
  82. Nakajima K, 2014, NEOPLASIA, V16, P939, DOI 10.1016/j.neo.2014.09.005
  83. Hendrix MJC, 2016, PHARMACOL THERAPEUT, V159, P83, DOI 10.1016/j.pharmthera.2016.01.006
  84. Takenaka Y, 2004, MOL CELL BIOL, V24, P4395, DOI 10.1128/MCB.24.10.4395-4406.2004
  85. Serizawa N, 2015, LAB INVEST, V95, P1145, DOI 10.1038/labinvest.2015.77
  86. Fermino ML, 2013, EUR J IMMUNOL, V43, P1806, DOI 10.1002/eji.201343381
  87. Andre S, 2014, CARBOHYD RES, V389, P25, DOI 10.1016/j.carres.2013.12.024
  88. Sakurai T, 2011, ONCOLOGY-BASEL, V81, P24, DOI 10.1159/000333256
  89. Seetharaman J, 1998, J BIOL CHEM, V273, P13047, DOI 10.1074/jbc.273.21.13047
  90. de Melo FHM, 2007, J HISTOCHEM CYTOCHEM, V55, P1015, DOI 10.1369/jhc.7A7174.2007
  91. Maniotis AJ, 1999, AM J PATHOL, V155, P739, DOI 10.1016/S0002-9440(10)65173-5
  92. HSU DK, 1992, J BIOL CHEM, V267, P14167
  93. Dufraine J, 2008, ONCOGENE, V27, P5132, DOI 10.1038/onc.2008.227
  94. MEHUL B, 1994, J BIOL CHEM, V269, P18250
  95. Zhuo Y, 2008, J BIOL CHEM, V283, P22177, DOI 10.1074/jbc.M8000015200
  96. WISEMAN DM, 1988, BIOCHEM BIOPH RES CO, V157, P793, DOI 10.1016/S0006-291X(88)80319-X
  97. Derynck R, 2001, NAT GENET, V29, P117, DOI 10.1038/ng1001-117
  98. Chen PW, 2013, INT REV CEL MOL BIO, V301, P1, DOI 10.1016/B978-0-12-407704-1.00001-4
  99. Barboni EAM, 2000, GLYCOBIOLOGY, V10, P1201, DOI 10.1093/glycob/10.11.1201
  100. Nangia-Makker P, 2007, CANCER RES, V67, P11760, DOI 10.1158/0008-5472.CAN-07-3233
  101. Birdsall B, 2001, BIOCHEMISTRY-US, V40, P4859, DOI 10.1021/bi002907f
  102. Haudek KC, 2010, BBA-GEN SUBJECTS, V1800, P181, DOI 10.1016/j.bbagen.2009.07.005
  103. Li X, 2010, CELL DEATH DIFFER, V17, P1277, DOI 10.1038/cdd.2010.8
  104. Raimond J, 1997, MAMM GENOME, V8, P706, DOI 10.1007/s003359900548
  105. Berbis MA, 2014, BIOCHEM BIOPH RES CO, V443, P126, DOI 10.1016/j.bbrc.2013.11.063
  106. Pinho SS, 2015, NAT REV CANCER, V15, P540, DOI 10.1038/nrc3982
  107. Ochieng J, 1998, BBA-GEN SUBJECTS, V1379, P97, DOI 10.1016/S0304-4165(97)00086-X
  108. Ideo H, 2011, J BIOL CHEM, V286, P11346, DOI 10.1074/jbc.M110.195925
  109. Dragomir ACD, 2012, J IMMUNOL, V189, P5934, DOI 10.4049/jimmunol.1201851
  110. John CM, 2003, CLIN CANCER RES, V9, P2374
  111. Borges BE, 2013, CHEM-BIOL INTERACT, V206, P37, DOI 10.1016/j.cbi.2013.08.005
  112. Wang YG, 2012, EXP MOL MED, V44, P387, DOI 10.3858/emm.2012.44.6.044
  113. AGRWAL N, 1993, J BIOL CHEM, V268, P14932
  114. Wu KL, 2013, J GASTROENTEROL, V48, P350, DOI 10.1007/s00535-012-0663-3
  115. Mazurek N, 2012, CELL DEATH DIFFER, V19, P523, DOI 10.1038/cdd.2011.123
  116. Yang RY, 1996, P NATL ACAD SCI USA, V93, P6737, DOI 10.1073/pnas.93.13.6737
  117. Zeng Y, 2007, J BONE MINER RES, V22, P1851, DOI 10.1359/JBMR.070620
  118. SATO S, 1993, EXP CELL RES, V207, P8, DOI 10.1006/excr.1993.1157
  119. Gong HC, 1999, CANCER RES, V59, P6239
  120. Nakahara S, 2006, CANCER RES, V66, P9995, DOI 10.1158/0008-5472.CAN-06-1772
  121. OCHIENG J, 1994, BIOCHEMISTRY-US, V33, P14109, DOI 10.1021/bi00251a020
  122. Jia WZ, 2013, AM J PATHOL, V182, P1821, DOI 10.1016/j.ajpath.2013.01.017
  123. Balan V, 2012, J BIOL CHEM, V287, P5192, DOI 10.1074/jbc.C111.331686
  124. Liu W, 2012, J INVEST DERMATOL, V132, P2828, DOI 10.1038/jid.2012.211
  125. Rego MJBD, 2013, MED MOL MORPHOL, V46, P92, DOI 10.1007/s00795-013-0013-4
  126. Hanahan D, 1996, CELL, V86, P353, DOI 10.1016/S0092-8674(00)80108-7
  127. Markowska AI, 2011, J BIOL CHEM, V286, P29913, DOI 10.1074/jbc.M111.226423
  128. Dennis JW, 1999, BBA-GEN SUBJECTS, V1473, P21, DOI 10.1016/S0304-4165(99)00167-1
  129. Mehul B, 1997, J CELL SCI, V110, P1169
  130. D'Haene N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067029
  131. de Oliveira JT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134458
  132. Etulain J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096402
  133. Halimi H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111836
  134. Harazono Y, 2014, ONCOTARGET, V5, P9992
  135. Hernandez J. D., 2002, GLYCOBIOLOGY, V12, P127
  136. Ikemori RY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111592
  137. Kim S-Y, 2011, EVID-BASED COMPL ALT, V2011, P1
  138. Kumar S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059761
  139. Lakshminarayan Ramya, 2014, Nat Cell Biol, V16, P595, DOI 10.1038/ncb2970
  140. Leffler Hakon, 2004, Glycoconjugate Journal, V19, P433
  141. Martins Luciane, 2006, Arq Bras Endocrinol Metabol, V50, P1075, DOI 10.1590/S0004-27302006000600014
  142. Meany Danni L, 2011, Clin Proteomics, V8, P7, DOI 10.1186/1559-0275-8-7
  143. Melo FHM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029313
  144. Meng FR, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126056
  145. Mirandola L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021811
  146. Mirandola L, 2014, INT REV IMMUNOL, V33, P417, DOI 10.3109/08830185.2014.911855
  147. Ruebel KH, 2005, CANCER RES, V65, P1136, DOI 10.1158/0008-5472.CAN-04-3578
  148. Shalom-Feuerstein R, 2008, CANCER RES, V68, P6608, DOI 10.1158/0008-5472.CAN-08-1117
  149. Shalom-Feuerstein R, 2005, CANCER RES, V65, P7292, DOI 10.1158/0008-5472.CAN-05-0775
  150. Sharon N, 2004, GLYCOBIOLOGY, V14, p53R, DOI 10.1093/glycob/cwh122
  151. Shetty P, 2016, MOL CELL BIOCHEM, V411, P221, DOI 10.1007/s11010-015-2584-y
  152. Song SM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042699
  153. Yang Ri-Yao, 2008, Expert Reviews in Molecular Medicine, V10, P1, DOI 10.1017/S1462399408000719