Morphometric Wing Characters as a Tool for Mosquito Identification

Carregando...
Imagem de Miniatura
Citações na Scopus
69
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
WILKE, Andre Barretto Bruno
CHRISTE, Rafael de Oliveira
MULTINI, Laura Cristina
VIDAL, Paloma Oliveira
WILK-DA-SILVA, Ramon
CARVALHO, Gabriela Cristina de
MARRELLI, Mauro Toledo
Citação
PLOS ONE, v.11, n.8, article ID e0161643, 12p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Mosquitoes are responsible for the transmission of important infectious diseases, causing millions of deaths every year and endangering approximately 3 billion people around the world. As such, precise identification of mosquito species is crucial for an understanding of epidemiological patterns of disease transmission. Currently, the most common method of mosquito identification relies on morphological taxonomic keys, which do not always distinguish cryptic species. However, wing geometric morphometrics is a promising tool for the identification of vector mosquitoes, sibling and cryptic species included. This study therefore sought to accurately identify mosquito species from the three most epidemiologically important mosquito genera using wing morphometrics. Twelve mosquito species from three epidemiologically important genera (Aedes, Anopheles and Culex) were collected and identified by taxonomic keys. Next, the right wing of each adult female mosquito was removed and photographed, and the coordinates of eighteen digitized landmarks at the intersections of wing veins were collected. The allometric influence was assessed, and canonical variate analysis and thin-plate splines were used for species identification. Cross-validated reclassification tests were performed for each individual, and a Neighbor Joining tree was constructed to illustrate species segregation patterns. The analyses were carried out and the graphs plotted with TpsUtil 1.29, TpsRelw 1.39, MorphoJ 1.02 and Past 2.17c. Canonical variate analysis for Aedes, Anopheles and Culex genera showed three clear clusters in morphospace, correctly distinguishing the three mosquito genera, and pairwise cross-validated reclassification resulted in at least 99% accuracy; subgenera were also identified correctly with a mean accuracy of 96%, and in 88 of the 132 possible comparisons, species were identified with 100% accuracy after the data was subjected to reclassification. Our results showed that Aedes, Culex and Anopheles were correctly distinguished by wing shape. For the lower hierarchical levels (subgenera and species), wing geometric morphometrics was also efficient, resulting in high reclassification scores.
Palavras-chave
Referências
  1. Borstler J, 2014, J VECTOR ECOL, V39, P204, DOI 10.1111/j.1948-7134.2014.12088.x
  2. Wilke ABB, 2014, PARASITE VECTOR, V7, DOI 10.1186/s13071-014-0468-8
  3. Calle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021
  4. Cartaxo MFS, 2011, T ROY SOC TROP MED H, V105, P491, DOI 10.1016/j.trstmh.2011.05.004
  5. Ceretti W, 2015, J AM MOSQUITO CONTR, V31, P172, DOI 10.2987/14-6457R
  6. Chaves LF, 2012, GLOBAL CHANGE BIOL, V18, P457, DOI 10.1111/j.1365-2486.2011.02522.x
  7. Chaves LF, 2010, Q REV BIOL, V85, P27, DOI 10.1086/650284
  8. Consoli R.A.G.B., 1994, PRINCIPAIS MOSQUITOS
  9. Cornel A, 2012, J AM MOSQUITO CONTR, V28, P113, DOI 10.2987/8756-971X-28.4s.113
  10. de Morais SA, 2010, MEM I OSWALDO CRUZ, V105, P672, DOI 10.1590/S0074-02762010000500012
  11. Descloux E, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001470
  12. Dibo MR, 2011, REV SOC BRAS MED TRO, V44, P496, DOI 10.1590/S0037-86822011000400019
  13. Dujardin J, 2006, ENCY INFECT DIS, P433
  14. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  15. Dujardin Jean-Pierre Al, 2010, BMC Res Notes, V3, P266, DOI 10.1186/1756-0500-3-266
  16. Eastwood G, 2011, AM J TROP MED HYG, V85, P426, DOI 10.4269/ajtmh.2011.10-0739
  17. Farajollahi A, 2011, INFECT GENET EVOL, V11, P1577, DOI 10.1016/j.meegid.2011.08.013
  18. Forattini OP, 2002, CULICIDOLOGIA MED ID
  19. Fruciano C, 2016, DEV GENES EVOL, V226, P139, DOI 10.1007/s00427-016-0537-4
  20. HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI 10.1016/J.BCP.2008.05.025
  21. Harbach RE, 2011, ACTA TROP, V120, P1, DOI 10.1016/j.actatropica.2011.06.005
  22. Harbach RE, 2012, ZOOL SCR, V41, P499, DOI 10.1111/j.1463-6409.2012.00546.x
  23. Harbach RE, 2013, MOSQUITO TAXONOMIC I
  24. Harbach RE, 1998, SYST ENTOMOL, V23, P327, DOI 10.1046/j.1365-3113.1998.00072.x
  25. Harbach RE, 2005, SYST BIODIVERS, V3, P345, DOI 10.1017/5147720000500174X
  26. Henry A, 2010, INFECT GENET EVOL, V10, P207, DOI 10.1016/j.meegid.2009.12.001
  27. Honorio NA, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000545
  28. Jaramillo N, 2015, MED VET ENTOMOL, V29, P26, DOI 10.1111/mve.12091
  29. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  30. Laurito M, 2013, MEM I OSWALDO CRUZ, V108, P110, DOI 10.1590/0074-0276130457
  31. Laurito M, 2015, ZOOMORPHOLOGY, V134, P447, DOI 10.1007/s00435-015-0271-x
  32. Lorenz C, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-257
  33. Louise C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137851
  34. Mayagaya VS, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0661-4
  35. Medeiros-Sousa AR, 2015, ACTA TROP, V150, P200, DOI 10.1016/j.actatropica.2015.08.002
  36. Medeiros-Sousa AR, 2013, J AM MOSQUITO CONTR, V29, P275, DOI 10.2987/12-6304R.1
  37. Motoki MT, 2012, INFECT GENET EVOL, V12, P1246, DOI 10.1016/j.meegid.2012.04.002
  38. Multini LC, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1256-9
  39. REINERT J. F., 2009, EUROPEAN MOSQUITO B, V27, P68
  40. Restrepo AC, 2014, TROP MED INT HEALTH, V19, P863, DOI 10.1111/tmi.12325
  41. Rohlf FJ., 2008, TPSDIG DIGITIZE LAND
  42. Sang SW, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003808
  43. Do TTT, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-1078
  44. Tipayamongkholgul M, 2009, BMC PUBLIC HEALTH, V9, DOI 10.1186/1471-2458-9-422
  45. Vidal PO, 2011, REV BRAS ENTOMOL, V55, P134, DOI 10.1590/S0085-56262011000100022
  46. Vidal PO, 2012, INFECT GENET EVOL, V12, P591, DOI 10.1016/j.meegid.2011.11.013
  47. Virginio F, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0769-6
  48. World Health Organization, 2010, GLOB PROGR EL LYMPH
  49. World Health Organization, 2015, NATURE
  50. World Health Organization, 2012, DENG SEV DENG WHO FA
  51. WHO, 2013, WORLD MALARIA REPORT 2013, P1
  52. Wilkerson RC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133602