PROP1 overexpression in corticotrophinomas: evidence for the role of PROP1 in the maintenance of cells committed to corticotrophic differentiation

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.68, n.6, p.887-891, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE: The expression of transcription factors involved in early pituitary development, such as PROP1 and POU1F1, has been detected in pituitary adenoma tissues. In this study, we sought to characterize the transcriptional profiles of PROP1, POU1F1, and TBX19 in functioning and nonfunctioning pituitary adenomas in an attempt to identify their roles in tumorigenesis and hormone hypersecretion. METHODS: RT-qPCR analyses were performed to assess the transcriptional pattern of PROP1, POU1F1, TBX19, and hormone-producing genes in tissue samples of corticotrophinomas (n = 10), somatotrophinomas (n = 8), and nonfunctioning adenomas (n = 6). RESULTS: Compared with normal pituitary tissue, POU1F1 was overexpressed in somatotrophinomas by 3-fold. PROP1 expression was 18-fold higher in corticotrophinomas, 10-fold higher in somatotrophinomas, and 3-fold higher in nonfunctioning adenomas. TBX19 expression was 27-fold higher in corticotrophinomas. Additionally, the level of TBX19 mRNA positively correlated with that of pro-opiomelanocortin (r = 0.49, p = 0.014). CONCLUSIONS: Our data demonstrate that PROP1 is overexpressed in pituitary adenomas, mainly in corticotrophinomas. Together with previously published data showing that patients who harbor PROP1 loss-of-function mutations present a progressive decline in corticotrope function, our results support a role for PROP1 in pituitary tumor development and in the maintenance of cell lineages committed to corticotrophic differentiation.
Palavras-chave
Pituitary Neoplasms, PROP1, POU1F1, TBX19
Referências
  1. Andersen B, 2001, ENDOCR REV, V22, P2, DOI 10.1210/er.22.1.2
  2. ASA SL, 1993, J CLIN ENDOCR METAB, V77, P1275, DOI 10.1210/jc.77.5.1275
  3. Bottner A, 2004, J CLIN ENDOCR METAB, V89, P5256, DOI 10.1210/jc.2004-0661
  4. Cushman LJ, 2001, HUM MOL GENET, V10, P1141, DOI 10.1093/hmg/10.11.1141
  5. Evans CO, 2001, J CLIN ENDOCR METAB, V86, P3097, DOI 10.1210/jc.86.7.3097
  6. Evans CO, 2008, PITUITARY, V11, P231, DOI 10.1007/s11102-007-0082-2
  7. Liu JX, 2001, P NATL ACAD SCI USA, V98, P8674, DOI 10.1073/pnas.141234898
  8. LLOYD RV, 1993, LAB INVEST, V69, P570
  9. Melmed S, 2003, J CLIN INVEST, V112, P1603, DOI 10.1172/JCI20401
  10. Mendonca BB, 1999, J CLIN ENDOCR METAB, V84, P942, DOI 10.1210/jc.84.3.942
  11. Moreno CS, 2005, CANCER RES, V65, P10214, DOI 10.1158/0008-5472.CAN-05-0884
  12. Nakamura S, 1999, J CLIN ENDOCR METAB, V84, P2581, DOI 10.1210/jc.84.7.2581
  13. Pulichino AM, 2003, GENE DEV, V17, P738, DOI 10.1101/gad.1065703
  14. Rhodes Simon J., 1994, Current Opinion in Genetics and Development, V4, P709, DOI 10.1016/0959-437X(94)90138-S
  15. Roche C, 2012, HUM GENE THER, V23, P104, DOI 10.1089/hum.2011.105
  16. Savage JJ, 2003, GENE, V319, P1, DOI 10.1016/S0378-111(03)00804-7
  17. Tateno T, 2007, EUR J ENDOCRINOL, V157, P717, DOI 10.1530/EJE-07-0428
  18. Turton JPG, 2005, CLIN ENDOCRINOL, V63, P10, DOI 10.1111/j.1365-2265.2005.02291.x
  19. Vankelecom H, 2010, EUR J NEUROSCI, V32, P2063, DOI 10.1111/j.1460-9568.2010.07523.x