S-Nitrosoglutathione and Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Regulate Compartmentalized Ras S-Nitrosylation and Stimulate Cell Proliferation

Carregando...
Imagem de Miniatura
Citações na Scopus
37
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT INC
Autores
BATISTA, Wagner L.
OGATA, Fernando T.
CURCIO, Marli F.
MIGUEL, Rodrigo B.
MATSUO, Alisson L.
MORAES, Miriam S.
STERN, Arnold
MONTEIRO, Hugo P.
Citação
ANTIOXIDANTS & REDOX SIGNALING, v.18, n.3, p.221-238, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims: S-nitrosylation of Cys118 is a redox-based mechanism for Ras activation mediated by nitric oxide (NO) at the plasma membrane. Results: Ras signaling pathway stimulation by 50 and/or 100 mu M of S-nitrosoglutathione (GSNO) causes proliferation of HeLa cells. Proliferation was not observed in HeLa cells overexpressing non-nitrosatable H-Ras(C118S). HeLa cells overexpressing H-Ras(wt) containing the spatiotemporal probe green fluorescent protein (GFP) fused to the Ras-binding domain of Raf-1 (GFP-RBD) incubated with 100 mu M GSNO stimulated a rapid and transient redistribution of GFP-RBD to the plasma membrane, followed by a delayed and sustained recruitment to the Golgi. No activation of H-Ras at the plasma membrane occurred in cells overexpressing H-Ras(C118S), contrasting with a robust and sustained activation of the GTPase at the Golgi. Inhibition of Src kinase prevented cell proliferation and activation of H-Ras by GSNO at the Golgi. Human umbilical vein endothelial cells (HUVECs) stimulated with bradykinin to generate NO were used to differentiate cell proliferation and Ras activation at the plasma membrane versus Golgi. In this model, Src kinase was not involved in cell proliferation, whereas Ras activation proceeded only at the plasma membrane, indicating that HUVEC proliferation induced by NO resulted only from stimulation of Ras. Innovation: The present work is the first to demonstrate that NO-mediated activation of Ras in different subcellular compartments regulates different downstream signaling pathways. Conclusion: S-nitrosylation of H-Ras at Cys(118) and the activation of Src kinase are spatiotemporally linked events of the S-nitrosothiol-mediated signaling pathway that occurs at the plasma membrane and at the Golgi. The nonparticipation of Src kinase and the localized production of NO by endothelial NO synthase at the plasma membrane limited NO-mediated Ras activation to the plasma membrane. Antioxid. Redox Signal. 18, 221-238.
Palavras-chave
Referências
  1. Adachi T, 2004, J BIOL CHEM, V279, P29857, DOI 10.1074/jbc.M313320200
  2. Ahearn IM, 2012, NAT REV MOL CELL BIO, V13, P39, DOI 10.1038/nrm3255
  3. Akhand AK, 1999, J BIOL CHEM, V274, P25821, DOI 10.1074/jbc.274.36.25821
  4. Arai RJ, 2006, BIOCHEM BIOPH RES CO, V348, P1254, DOI 10.1016/j.bbrc.2006.07.178
  5. Bae SW, 2003, BIOCHEM BIOPH RES CO, V306, P981, DOI 10.1016/S0006-291X(03)01086-6
  6. Baker TL, 2000, J BIOL CHEM, V275, P22037, DOI 10.1074/jbc.M001813200
  7. Bivona TG, 2003, NATURE, V424, P694, DOI 10.1038/nature01806
  8. Bivona TG, 2005, METHODS, V37, P138, DOI 10.1016/j.ymeth.2005.05.022
  9. Blaukat A, 2000, MOL CELL BIOL, V20, P6837, DOI 10.1128/MCB.20.18.6837-6848.2000
  10. Burgoyne JR, 2012, FASEB J, V26, P832, DOI 10.1096/fj.11-189415
  11. Caloca MJ, 2003, J BIOL CHEM, V278, P33465, DOI 10.1074/jbc.M302807200
  12. Castro IP, 2004, MOL CELL BIOL, V24, P3485
  13. Chiu VK, 2002, NAT CELL BIOL, V4, P343, DOI 10.1038/ncb783
  14. Choy E, 1999, CELL, V98, P69, DOI 10.1016/S0092-8674(00)80607-8
  15. CLARKE S, 1992, ANNU REV BIOCHEM, V61, P355, DOI 10.1146/annurev.biochem.61.1.355
  16. Curcio MF, 2010, ANTIOXID REDOX SIGN, V13, P109, DOI 10.1089/ars.2009.2534
  17. deRooij J, 1997, ONCOGENE, V14, P623, DOI 10.1038/sj.onc.1201005
  18. Dimmeler S, 1999, NATURE, V399, P601
  19. Ebinu JO, 1998, SCIENCE, V280, P1082, DOI 10.1126/science.280.5366.1082
  20. Engels K, 2008, CANCER RES, V68, P5159, DOI 10.1158/0008-5472.CAN-08-0406
  21. Fehrenbacher N, 2009, MOL ONCOL, V3, P297, DOI 10.1016/j.molonc.2009.06.004
  22. Forrester MT, 2009, FREE RADICAL BIO MED, V46, P119, DOI 10.1016/j.freeradbiomed.2008.09.034
  23. Fukumura D, 2006, NAT REV CANCER, V6, P521, DOI 10.1038/nrc1910
  24. Fulton D, 2004, J BIOL CHEM, V279, P30349, DOI 10.1074/jbc.M402155200
  25. Fulton D, 2002, J BIOL CHEM, V277, P4277, DOI 10.1074/jbc.M106302200
  26. Giustarini D, 2005, ANTIOXID REDOX SIGN, V7, P930, DOI 10.1089/ars.2005.7.930
  27. Gow AJ, 1997, J BIOL CHEM, V272, P2841
  28. HANCOCK JF, 1990, CELL, V63, P133, DOI 10.1016/0092-8674(90)90294-O
  29. Hancock JF, 2003, NAT REV MOL CELL BIO, V4, P373, DOI 10.1038/nrm1105
  30. Hanke JH, 1996, J BIOL CHEM, V271, P695
  31. Hess DT, 2005, NAT REV MOL CELL BIO, V6, P150, DOI 10.1038/nrm1569
  32. Ibiza S, 2008, P NATL ACAD SCI USA, V105, P10507, DOI 10.1073/pnas.0711062105
  33. Iwakiri Y, 2011, NITRIC OXIDE-BIOL CH, V25, P95, DOI 10.1016/j.niox.2011.04.014
  34. Iwakiri Y, 2006, P NATL ACAD SCI USA, V103, P19777, DOI 10.1073/pnas.0605907103
  35. Karnoub AE, 2008, NAT REV MOL CELL BIO, V9, P517, DOI 10.1038/nrm2438
  36. Kuhr F, 2010, NEUROPEPTIDES, V44, P145, DOI 10.1016/j.npep.2009.12.004
  37. Lander HM, 1997, J BIOL CHEM, V272, P4323
  38. Lechner M, 2005, SEMIN CANCER BIOL, V15, P277, DOI 10.1016/j.semcancer.2005.04.004
  39. LIAO F, 1993, BIOCHEM BIOPH RES CO, V191, P1028, DOI 10.1006/bbrc.1993.1320
  40. Lim KH, 2008, NATURE, V452, P646, DOI 10.1038/nature06778
  41. Litvak KJ, 2001, METHODS, V25, P402
  42. Lorenzo PS, 2001, CANCER RES, V61, P943
  43. Mallis RJ, 2000, ARCH BIOCHEM BIOPHYS, V383, P60, DOI 10.1006/abbi.2000.2048
  44. Mallis RJ, 2001, BIOCHEM J, V355, P145
  45. Monteiro HP, 2004, NITRIC OXIDE-BIOL CH, V10, P1, DOI 10.1016/j.niox.2004.02.002
  46. Monteiro HP, 2000, FREE RADICAL BIO MED, V28, P174, DOI 10.1016/S0891-5849(99)00233-6
  47. Monteiro HP, 1996, FREE RADICAL BIO MED, V21, P323, DOI 10.1016/0891-5849(96)00051-2
  48. Monteiro HP, 2008, ANTIOXID REDOX SIGN, V10, P843, DOI 10.1089/ars.2007.1853
  49. Morbidelli L, 1998, BRIT J PHARMACOL, V124, P1286, DOI 10.1038/sj.bjp.0701943
  50. Oess S, 2006, BIOCHEM J, V396, P401, DOI 10.1042/BJ20060321
  51. Okayama H, 2013, INT J CANCER, V132, P9, DOI 10.1002/ijc.27644
  52. Oliveira CJR, 2008, NITRIC OXIDE-BIOL CH, V18, P241, DOI 10.1016/j.niox.2008.02.001
  53. Oliveira CJR, 2003, FREE RADICAL BIO MED, V35, P381, DOI 10.1016/S0891-5849(03)00311-3
  54. Pearce LR, 2010, NAT REV MOL CELL BIO, V11, P9, DOI 10.1038/nrm2822
  55. PERANOVICH TMS, 1995, BIOCHEM J, V305, P613
  56. Rafikova O, 2002, P NATL ACAD SCI USA, V99, P5913, DOI 10.1073/pnas.092048999
  57. Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378
  58. Rahman MA, 2010, J BIOL CHEM, V285, P3806, DOI 10.1074/jbc.M109.059782
  59. Reuter CWM, 2000, BLOOD, V96, P1655
  60. Ridnour LA, 2006, ANTIOXID REDOX SIGN, V8, P1329, DOI 10.1089/ars.2006.8.1329
  61. Rocks O, 2005, SCIENCE, V307, P1746, DOI 10.1126/science.1105654
  62. Rocks O, 2006, CURR OPIN CELL BIOL, V18, P351, DOI 10.1016/j.ceb.2006.06.007
  63. Schafer FQ, 2001, FREE RADICAL BIO MED, V30, P1191, DOI 10.1016/S0891-5849(01)00480-4
  64. Schlessinger J, 2000, CELL, V103, P211, DOI 10.1016/S0092-8674(00)00114-8
  65. Solca FF, 2004, J PHARMACOL EXP THER, V311, P502, DOI 10.1124/jpet.104.069138
  66. Takai Y, 2001, PHYSIOL REV, V81, P153
  67. Thomas DD, 2008, FREE RADICAL BIO MED, V45, P18, DOI 10.1016/j.freeradbiomed.2008.03.020
  68. Tsujita M, 2008, BIOCHEM BIOPH RES CO, V369, P1001, DOI 10.1016/j.bbrc.2008.02.117
  69. Van Triest M, 2001, METHOD ENZYMOL, V333, P343
  70. Villalobo A, 2006, FEBS J, V273, P2329, DOI 10.1111/j.1742-4658.2006.05250.x
  71. Zhang YH, 2004, AM J PHYSIOL-LUNG C, V287, pL467, DOI 10.1152/ajplung.00350.2003