Influence of Polymorphisms and Cholesterol-Lowering Treatment on SCARB1 mRNA Expression

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2011
Título da Revista
ISSN da Revista
Título do Volume
Editora
JAPAN ATHEROSCLEROSIS SOC
Autores
CERDA, Alvaro
GENVIGIR, Fabiana Dalla Vecchia
RODRIGUES, Alice Cristina
WILLRICH, Maria Alice Vieira
ARAZI, Simone Sorkin
OLIVEIRA, Raquel de
HIRATA, Mario Hiroyuki
HIRATA, Rosario Dominguez Crespo
Citação
JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, v.18, n.8, p.640-651, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: This study evaluated the influence of polymorphisms and cholesterol-lowering treatments on SCARB1 mRNA expression in peripheral blood mononuclear cells and in HepG2 and Caco-2 cells. Methods: Blood samples were drawn from normolipidemic (NL, n = 166) and hypercholesterolemic (HC, n = 123) individuals to extract DNA and total RNA and to analyze the lipid profile. After a 4-week washout period, 98 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) whereas 25 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg each/day/4 weeks). HepG2 and Caco-2 cells were treated with atorvastatin, simvastatin and ezetimibe at various concentrations for 12 and 24 h and collected for RNA extraction. SCARB1 mRNA expression was measured by TaqMan (R) assay and SCARB1 c.4G > A, c.726 + 54C > T and c.1080C > T polymorphisms were detected by PCR-RFLP. Results: High LDL cholesterol (> 160 mg/dL) values were associated with low baseline SCARB1 mRNA expression in PBMC. Allele T carriers for SCARB1 c.726 + 54C > T had lower basal SCARB1 transcription in PBMC (p < 0.05). Simvastatin, atorvastatin and ezetimibe treatments did not modify the SCARB1 mRNA level in PBMC from HC patients. Similarly, these cholesterol-lowering drugs did not modulate the SCARB1 expression in HepG2 and Caco-2 cells in spite of the concentration and time of exposure (p > 0.05). Conclusion: LDL cholesterol levels and SCARB1 c.726 + 54C > T are associated with low mRNA expression in mononuclear cells. Cholesterol-lowering drugs do not modulate SCARB1 expression in PBMC from HC subjects or in HepG2 and Caco-2 cells.
Palavras-chave
Scavenger receptor class B type I, Cholesterol-lowering drugs, Gene expression, Single nucleotide polymorphisms
Referências
  1. Ahmed RAM, 2009, ENDOCRINE, V35, P233, DOI 10.1007/s12020-008-9142-2
  2. Panzenboeck U, 2006, INT J BIOCHEM CELL B, V38, P1314, DOI 10.1016/j.biocel.2006.01.013
  3. Perez-Martinez P, 2004, J MOL ENDOCRINOL, V32, P237, DOI 10.1677/jme.0.0320237
  4. Osgood D, 2003, J CLIN ENDOCR METAB, V88, P2869, DOI 10.1210/jc.2002-021664
  5. During A, 2005, J NUTR, V135, P2305
  6. Trigatti BL, 2003, ARTERIOSCL THROM VAS, V23, P1732, DOI 10.1161/01.ATV.0000091363.28501.84
  7. Sane AT, 2006, J LIPID RES, V47, P2112, DOI 10.1194/jlr.M600174-JLR200
  8. Naj AC, 2010, CIRC-CARDIOVASC GENE, V3, P47, DOI 10.1161/CIRCGENETICS.109.903195
  9. Van Eck M, 2008, J LIPID RES, V49, P136, DOI 10.1194/jlr.M700355-JLR200
  10. Huby T, 2006, J CLIN INVEST, V116, P2767, DOI 10.1172/JCI26893
  11. Xu MZ, 2009, HYPERTENS RES, V32, P455, DOI 10.1038/hr.2009.46
  12. Ueda Y, 2000, J BIOL CHEM, V275, P20368, DOI 10.1074/jbc.M000730200
  13. Tai ES, 2003, CLIN GENET, V63, P53, DOI 10.1034/j.1399-0004.2003.630108.x
  14. Guan JZ, 2008, J ATHEROSCLER THROMB, V15, P20
  15. Salazar LA, 1998, CLIN CHEM, V44, P1748
  16. Kozarsky KF, 2000, ARTERIOSCL THROM VAS, V20, P721
  17. Genvigir FDV, 2008, CLIN CHIM ACTA, V389, P79, DOI [10.1016/j.cca.2007.11.029, 10.1016/j.cea.2007.11.029]
  18. Rhainds D, 2004, INT J BIOCHEM CELL B, V36, P39, DOI 10.1016/S1357-2725(03)00173-0
  19. Landschulz KT, 1996, J CLIN INVEST, V98, P984, DOI 10.1172/JCI118883
  20. Huang XS, 2009, BRIT J PHARMACOL, V158, P706, DOI 10.1111/j.1476-5381.2009.00350.x
  21. Valacchi G, 2007, TOXICOL APPL PHARM, V222, P227, DOI 10.1016/j.taap.2007.04.010
  22. Roberts CGP, 2007, HUM HERED, V64, P107, DOI 10.1159/000101962
  23. Acton S, 1999, ARTERIOSCL THROM VAS, V19, P1734
  24. Pagler TA, 2006, J BIOL CHEM, V281, P11193, DOI 10.1074/jbc.M510261200
  25. Van Eck M, 2003, J BIOL CHEM, V278, P23699, DOI 10.1074/jbc.M211233200
  26. Tanaka T, 2007, J NUTR, V137, P578
  27. Bays Harold E, 2008, Expert Rev Cardiovasc Ther, V6, P447, DOI 10.1586/14779072.6.4.447
  28. Cerda A, 2010, CLIN CHIM ACTA
  29. Chiba-Falek O, 2010, BMC MED GENET, V11, DOI 10.1186/1471-2350-11-9
  30. Constantineau J, 2009, ATHEROSCLEROSIS
  31. Cuchel M, 2010, ARTERIOSCL THROM VAS, V30, P526, DOI 10.1161/ATVBAHA.109.196105
  32. Davignon Jean, 2009, Trans Am Clin Climatol Assoc, V120, P163
  33. FRIEDEWA.WT, 1972, CLIN CHEM, V18, P499
  34. Haikal Z, 2008, LIPIDS, V43, P401, DOI 10.1007/s11745-008-3172-7
  35. Han JH, 2004, CIRCULATION, V110, P3472, DOI 10.1161/01.CIR.0000148368.79202.F1
  36. Le Jossec M, 2004, MOL BIOL EVOL, V21, P760, DOI 10.1093/molbev/msh074
  37. Liu YJ, 2008, J HUM GENET, V53, P709, DOI 10.1007/s10038-008-0302-2
  38. Llaverias G, 2006, BIOCHEM PHARMACOL, V71, P605, DOI 10.1016/j.bcp.2005.11.022
  39. Llaverias G, 2004, BIOCHEM PHARMACOL, V68, P155, DOI 10.1016/j.bcp.2004.03.009
  40. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  41. Qiu GS, 2008, J CARDIOVASC PHARM, V51, P388, DOI 10.1097/FJC.0b013e318167141f
  42. Rhainds D, 2003, BIOCHEMISTRY-US, V42, P7527, DOI 10.1021/bi026949a
  43. Rodrigues AC, 2009, ACTA PHARMACOL SIN, V30, P956, DOI 10.1038/aps.2009.85
  44. Rodriguez-Esparragon F, 2005, ARTERIOSCL THROM VAS, V25, P854, DOI 10.1161/01.ATV.0000157581.88838.03
  45. Svensson Per-Arne, 2005, BMC Cardiovasc Disord, V5, P25, DOI 10.1186/1471-2261-5-25
  46. Yamada E, 2005, J GEN VIROL, V86, P2507, DOI 10.1099/vir.0.81169-0