Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques

Carregando...
Imagem de Miniatura
Citações na Scopus
71
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC ADVANCEMENT SCIENCE
Autores
MAGNANI, Diogo M.
ROGERS, Thomas F.
BEUTLER, Nathan
RICCIARDI, Michael J.
BAILEY, Varian K.
GONZALEZ-NIETO, Lucas
BRINEY, Bryan
SOK, Devin
LE, Khoa
STRUBEL, Alexander
Citação
SCIENCE TRANSLATIONAL MEDICINE, v.9, n.410, article ID eaan8184, 7p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Therapies to prevent maternal Zika virus (ZIKV) infection and its subsequent fetal developmental complications are urgently required. We isolated three potent ZIKV-neutralizing monoclonal antibodies (nmAbs) from the plasma-blasts of a ZIKV-infected patient-SMZAb1, SMZAb2, and SMZAb5-directed against two different domains of the virus. We engineered these nmAbs with Fc LALA mutations that abrogate Fc gamma receptor binding, thus eliminating potential therapy-mediated antibody-dependent enhancement. We administered a cocktail of these three nmAbs to nonhuman primates 1 day before challenge with ZIKV and demonstrated that the nmAbs completely prevented viremia in serum after challenge. Given that numerous antibodies have exceptional safety profiles in humans, the cocktail described here could be rapidly developed to protect uninfected pregnant women and their fetuses.
Palavras-chave
Referências
  1. Barba-Spaeth G, 2016, NATURE, V536, P48, DOI 10.1038/nature18938
  2. Bardina SV, 2017, SCIENCE, V356, P175, DOI 10.1126/science.aal4365
  3. Bonaldo MC, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004816
  4. Brasil P, 2016, NEW ENGL J MED, V375, P2321, DOI 10.1056/NEJMoa1602412
  5. Brien JD, 2013, CURR PROTOC MICROBIO, V31, DOI 10.1002/9780471729259.MC15D03S31
  6. de Alwis R, 2014, METHODS MOL BIOL, V1138, P27, DOI 10.1007/978-1-4939-0348-1_3
  7. Dejnirattisai W, 2016, NAT IMMUNOL, V17, P1102, DOI 10.1038/ni.3515
  8. Dowd KA, 2016, SCIENCE, V354, P237, DOI 10.1126/science.aai9137
  9. Dowd KA, 2011, VIROLOGY, V411, P306, DOI 10.1016/j.virol.2010.12.020
  10. Durbin AP, 2001, AM J TROP MED HYG, V65, P405
  11. Fuss I. J., 2009, CURR PROTOC IMMUNOL
  12. Guzman MG, 2013, ARCH VIROL, V158, P1445, DOI 10.1007/s00705-013-1645-3
  13. HALSTEAD SB, 1979, J INFECT DIS, V140, P527
  14. Hessell AJ, 2007, NATURE, V449, P101, DOI 10.1038/nature06106
  15. Johnson BW, 2005, J CLIN MICROBIOL, V43, P4977, DOI 10.1128/JCM.43.10.4977-4983.2005
  16. Juckstock J, 2015, PHARMACOLOGY, V95, P209, DOI 10.1159/000381626
  17. Kraus AA, 2007, J CLIN MICROBIOL, V45, P3777, DOI 10.1128/JCM.00827-07
  18. Lai CJ, 2007, J VIROL, V81, P12766, DOI 10.1128/JVI.01420-07
  19. Larocca RA, 2016, NATURE, V536, P474, DOI 10.1038/nature18952
  20. Magnani D. M., 2017, MOL THER
  21. Marston HD, 2016, NEW ENGL J MED, V375, P1209, DOI 10.1056/NEJMp1607762
  22. Mlakar J, 2016, NEW ENGL J MED, V374, P951, DOI 10.1056/NEJMoa1600651
  23. Null D, 1998, PEDIATRICS, V102, P531
  24. Priyamvada L, 2016, P NATL ACAD SCI USA, V113, P7852, DOI 10.1073/pnas.1607931113
  25. Reynolds MR, 2017, MMWR-MORBID MORTAL W, V66, P366, DOI 10.15585/mmwr.mm6613e1
  26. Robbie GJ, 2013, ANTIMICROB AGENTS CH, V57, P6147, DOI 10.1128/AAC.01285-13
  27. Rogers T. F., 2017, SCI IMMUNOL, V2
  28. Santiago GA, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002311
  29. Sapparapu G, 2016, NATURE, V540, P443, DOI 10.1038/nature20564
  30. Simister NE, 2003, VACCINE, V21, P3365, DOI 10.1016/S0264-410X(03)00334-7
  31. Styer LM, 2007, PLOS PATHOG, V3, P1262, DOI 10.1371/journal.ppat.0030132
  32. Sukupolvi-Petty S, 2010, J VIROL, V84, P9227, DOI 10.1128/JVI.01087-10
  33. Wang TT, 2017, SCIENCE, V355, P395, DOI 10.1126/science.aai8128
  34. World Health Organization, 2005, 5 M EM COMM INT HLTH
  35. Zhao HY, 2016, CELL, V166, P1016, DOI 10.1016/j.cell.2016.07.020